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Abstract
Visualization has shown great promise to fur-
ther the understanding how deep neural networks
function and operate. However, less focus has
been placed on visualizing the training process
of these models. This paper attempts to bridge
this gap. We define two metrics by which the
progress of the learning can be a quantitatively
assessed. The first is a discriminability metric
which evaluates the neuron evolution, while the
second is a density metric which evaluates the
output feature maps. Based on these metrics, a
level-of-detail visual analytics framework is es-
tablished that measures the evolution of the deep
neural network both on a local and on a global
scale. We demonstrate the efficacy of our system
by ways of two real world case studies.

1. Introduction
With the rather explosive development of deep learning
techniques (Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2014), visualization has emerged as an effective way
to understand how deep neural networks work and operate.
These efforts have come from the deep learning community
as well as from the visual analytics community. The for-
mer has focused largely on visualizing the features learned
by the network, such as speech features in NLP (Karpathy
et al., 2015; Bahdanau et al., 2014) and image features in
computer vision (Zeiler & Fergus, 2014; Simonyan et al.,
2013; Krizhevsky et al., 2012). On the other hand, the
visual analytics community has primarily sought to visu-
alize the network and its connectivity, such as connection
weights(Liu et al., 2016; Smilkov et al.; Harley, 2015) and
hidden state patterns (Strobelt et al., 2016; Kahng et al.,
2017).

Conversely, much fewer efforts, if any, have gone into de-
vising effective visualization techniques to monitor the net-
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work training process and the network’s evolution. Since
proper training is a crucial prerequisite for a network’s ef-
fective operation, this is clearly a critical gap. This pa-
per seeks to make progress in this direction. By examining
the drawbacks of current works, we elucidate the following
three important capabilities a visual analytics framework
for network evolution monitoring needs to possess:

1) Monitor neural network evolution: Understanding and
visualizing how a deep neural network evolves can provide
tremendous insights on how it works.
2) Rigorous quantitative evaluation: An effective assess-
ment and monitoring requires effective quantitative met-
rics that can accurately evaluate the neural network training
phase.
3) Expand theoretical insights: Theoretical insights into
deep learning techniques (e.g. batch normalization) and
phenomena (e.g. overfitting) are required due to their sig-
nificance to deep model design and refinement.

We make use of these observations in our new frame-
work. Deep View (DV), a scalable level-of-detail visual-
ization system for deep learning visualization (Fig. 1). DV
builds upon two newly defined quantitative metrics, dis-
criminability and density defined to enable an insightful
layer and neuron evaluation. Based on these metrics, we
uncover the evolution of deep neural networks on three
granularities or levels of scale – network (macroscopic),
layer (mesoscopic) and neuron (microscopic).

The remainder of this paper is structured as follows: Sec-
tion 2 presents our proposed methodology. Section 3 de-
scribes the associated visualization framework we propose.
Two real world case studies are examined in Section 4. Fi-
nally, Section 5 concludes the paper with a brief discussion.

2. Methodology
In this section, we propose the two new metrics, discrim-
inability and density, that we use to quantitatively evaluate
neurons and layers.

2.1. Discriminability Metric

In deep learning, the loss function is a frequently-used met-
ric for the class-wise discriminability evaluation of the neu-
rons in the final layer. As for the neurons in the inner layers,
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Fig. 1. The interface of our DV system for lenet visualization. Network discriminability overview (a), is encoded using heatmap across
layers (y axis) and epochs (x axis). After selecting a specific layer (layer1), the discriminability overview (b) is shown as a heatmap
embedded with line chart. Each line represents one neuron discriminability evolution and exceptional (good or bad) neurons are indicated
using red lines. Besides, layer1 neuron features (c) are clustered and projected into 2D space to preserve similarity. Here, a weighted
average feature method is used to enable hierarchical neuron cluster feature exploration. Multifaceted features of the 1st neuron (d) in
layer1 These features are obtained through the cluster of feature collections and presented using weighted average image to summarize
main patterns. They are projected into 2D space for locality preservation.

due to the lack of ground truth for specific classes or visual
concepts, it is challenging to quantitatively evaluate them.
However, we observe that in most cases, neurons start from
a random even distribution but then converge to a specific
distribution steadily. This observation inspired us to devise
a distribution distance-based metric geared to describe the
discriminability of the inner layer neurons. Specifically, for
a neuron np, we take the average of all class pair distances
to assess their discriminability:

D(np) = avg

 m−1∑
ci,cj=0

dist
(
θnp
ci , θ

np
cj

) (1)

where (ci, cj) is a class pair,m is the number of classes, and
θ
np
ci is the activation distribution of neuron np over class ci.

In terms of computation, θnp
ci is approximated from average

activation samples Onp
ci ∈ Rw×h×#ci , where w and h are

the feature map width and height, and #ci is the number of
input images for class ci.

As seen from equation (1), discriminability heavily re-
lies on the distance metric. Among multifarious candi-
dates, most divergence based metrics (e.g. KL-divergence,
Jensen-Shannon divergence and Hellinger distance) are in-
eligible since they fail when two distributions have no over-
lap. Inspired by Arjovsky et al. (2017), the 2nd Wasserstein
distance, aka earth mover’s distance, fits well here:

W2(α, β) =

√∑
p

(αp − βp)2

where αp and βp are pth distribution samples.

2.2. Density Metric

In CNN structures, rectified linear unit (ReLU) activa-
tion, which usually succeeds each convolutional (CONV)
layer, cuts negative values and preserves positive values to
achieve representation sparseness. Nonetheless, output that
is too dense or sparse indicates pathological deep model
training. Therefore we define the denseness of positive ac-
tivations for a neuron as density. Given neuron np, the den-
sity is formulated as:

DN (np) = avg

[
g

(
avg

axis=w,h
(Onp)

)]
(2)

where Onp ∈ Rw×h×
∑m−1

i=0 ci is neuron np’s activation
while g (·) is an activation mapping function that sets neg-
ative values to zero, positive values larger than one to one,
and preserves the remaining values.

Density directly reveals the condition of the neuron learn-
ing process and assists in detecting potential training prob-
lems. For instance, overfitting, a common symptom in deep
learning, can only be diagnosed based on loss curves. With
the density metric, instead of waiting for overfitting to hap-
pen in the final layer, we can “infer” it by observing neuron
density in the early training phase.
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3. Deep View Visualizations
As mentioned, our DV system operates at three granu-
larities of focus: macroscopic, mesoscopic, and micro-
scopic. In the onset, the user first obtains a general network
overview, which forms the macroscopic scale. Here, layers
may pop out that peek the user’s interest. They can be fur-
ther inspected in a layer visualization that displays the evo-
lution of neurons with averaged features – the mesoscopic
scale. Finally, the visual analysis of specific neuron multi-
faceted features occurs at the microscopic scale.

3.1. Macroscopic Scale: Network Overview

The network overview summarizes the evolution of lay-
ers along training epochs using a heatmap, In Fig. 2(a),
each row represents one layer over different training epochs
and each column represents one epoch over different lay-
ers. The color scheme can encode either discriminability or
density levels. Since one layer consists of many neurons,
layer discriminability and density is obtained by averaging
over neurons. The final layer shows the loss function and
the top 1 or 5 training/validation errors.

3.2. Mesoscopic Scale: Layer Visualization

Having gained a high level network overview, the layer vi-
sualization allows users to dig in and inspect specific layers
of interest for a detailed analysis. The layer visualization
provides users with the opportunity to understand the layer-
wise neurons in relation to all neurons (in terms of discrim-
inability or density) and the neuron’s learned features.

3.2.1. LAYER OVERVIEW

To visualize the evolution of neurons in a specific layer, we
chose a contextual visualization where a heatmap shows
the neuron overview and the lines show the neuron evolu-
tion over epochs. In Fig. 2(b), the x axis indicates epochs
and the y axis indicates discriminability levels. For bet-
ter visibility of the main patterns, we discretize the layer
overview panel epoch-wise into buckets (e.g. 45 epochs ×
20 levels) where the percentage of neurons in each bucket
is visualized by grid opacity. The darker a grid cell is, the
higher the percentage it represents. In the line chart, each
line represents the evolution of one neuron. When the num-
ber of neurons grows large, in order to avoid clutter,. only
exceptional neurons are shown using red lines.

3.2.2. LAYER FEATURE

A shortcoming of the present layer-based neuron visual-
ization is that the corresponding learned features cannot
be discerned. To remedy this, we employ the receptive
field (RF) based neuron feature extraction method (Gir-
shick et al., 2014) to extract the top k activated patches each

(a)

(b)

(A)

Fig. 2. (a): Discriminability overview of shallow. (b): Layer1
discriminability overview of Shallow. Only exceptional neurons
are shown using red lines.

neuron is sensitive to. However, two challenges persist: 1)
the impossibility of visualizing all neurons, 2) the difficulty
of exploring all facets, even for a single neuron.

We solve the first challenge through neuron clustering. We
exploit the distribution distance of class-wise neuron pairs,
where the distance of neuron pair (np, nq) is defined as:

Ndis(np, nq) =

m−1∑
i=0

W2

(
θnp
ci , θ

nq
ci

)
(3)

Via this equation we obtain a neuron distance matrix and
adopt agglomerative clustering and multidimensional scal-
ing (MDS) to hierarchically cluster and project neurons
into 2D space. By default, we set the number of clusters
to five, but the the user can change this interactively.

To address the second challenge, we are inspired by the av-
erage image explorer of Zhu et al. (Zhu et al., 2014), which
effectively extracts informative patterns and filters out ir-
relevant noise. A clear average image will be indicative of
well-regulated features in a pure neuron with good quality.
On the other hand,. a messy average image will exhibit a
chaotic pattern, indicating an impure neuron with bad qual-
ity. We apply this weighted average methodology to our
hierarchical neuron feature exploration. Here, we treat the
activation level for each neuron as a weight and average
the levels over the top k0 (k0 = 20) features to represent



Evolutionary Visual Analysis of Deep Neural Networks

the highest activated pattern. For a neuron cluster, we treat
the inverse of the distance from each neuron to the cluster
center as a weight and average the corresponding average
features of the k1 (k1 = 4) nearest neurons.

The integration of MDS, agglomerative clustering, and
weighted average image techniques provides a clear layer-
wise neuron feature visualization (Fig. 3(a)). The color of
the nodes encodes the cluster groups and the radius of the
center node encodes the size of a cluster. For each neuron
cluster, we visualize its average as a single image attached
to the cluster center inside the black rectangle. For each
neuron inside a cluster, the neuron average image is shown
in the leftmost red column followed by the top 5 highest
activated patterns.

3.3. Microscopic Scale: Neuron Multifaceted Feature
Visualization

When interrogating the features learned by the neuron, typ-
ically the most attention only goes to the highest activated
feature. But a neuron learns multifaceted feature patterns
(Nguyen et al., 2016), of which the highest activated fea-
ture is a part of. As deep neural networks are highly non-
linear with complex weight connections, these multiple as-
pects all play key roles in the understanding of neurons and
should be considered. Unfortunately, previous works do
not realize these complex interactions and so lead to a bi-
ased and incomplete view of the neurons.

Similar to (Nguyen et al., 2016), we apply K-means, t-
SNE (Maaten & Hinton, 2008) and image weighted aver-
age methods to uncover multifaceted features. The proce-
dure we use to extend the layer feature visualization was
presented in Section 3.2.2. First, a range of features (e.g.
the top 1,000 highest activated features) are extracted and
clustered into groups. Second, the clusters and centroids
are projected into 2D space using t-SNE. Third, for each
feature cluster, the 20 nearest images are weight-averaged
for representation. As shown in Fig. 3(b), each node in
the average feature represents one feature facet. A current
limitation is that it is hard to detect the number of mul-
tifaceted features. Unsupervised clustering is a good di-
rection, however, tuning their hyper-parameters (e.g. the
leaf size in DBSCAN) is bothersome. We decided to use
K-means with 10 clusters by default. Users can change k
based on their preferences.

4. Case Study
To demonstrate the effectiveness of our DV system, we per-
formed case studies with two domain experts (co-author 3
and 4) from two university research labs. The first case
study (Section 4.1) shows that our system can promote
deep neural network comprehension, reveal potential un-
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Fig. 3. (a): Layer1 neuron features of shallow. (b): Multifaceted
feature visualization of 4th neuron in shallow layer1.

derfitting/overfitting and refine network structure. The sec-
ond case study (Section 4.2) manifests that DV advances
the understanding of state-of-the-art deep learning tech-
niques.

For this evaluation we employ CIFAR10 (Krizhevsky &
Hinton, 2009) which is a relatively small but difficult
dataset. During the case study, the experts experienced DV
with various deep neural networks. Fig. 4 shows related
network structures during exploration.
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Fig. 4. Network structures and their corresponding accuracies.

4.1. Case Study 1: Network Diagnosis and Refinement

Expert A (EA) is a third year Ph.D. student. His research
interest is data mining and general machine learning, and
uses our system as a deep model practitioner focusing on
task-specific networks. Recently, he designed attention
based models for location prediction. He wanted to uti-
lize our system to compare baseline deep models to better
understand their inner strategies and improve their perfor-
mance.

4.1.1. UNDERSTANDING BASELINE NETWORK

Adopting lenet (LeCun et al., 1998) as baseline, EA de-
signed the shallow network (Fig. 4) with fewer layers and
neurons to see the influence of deeper and wider structures.

The results obtained with shallow are shown in Fig. 2 and
Fig. 3, and those of lenet are shown in Fig. 1. After exam-
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Fig. 5. (a) and (A): Final layer neuron features of lenet and shal-
low. Cat, dog and bird neurons are shown with their average fea-
ture and top 5 highest activated features. (b) and (B): Bird neuron
multifaceted features of lenet and shallow. Three facet average
features are shown in rectangles.

ining the discriminability overviews in Fig. 2(a) and Fig.
1(a), he found that both networks had a gradually increas-
ing trend, however discriminability in shallow was not as
stable as lenet. He also noticed that the layers in Fig. 2(a)
(A) block had a decreasing discriminability trend after the
30th epoch. This was consistent with the training setting
where he lowered the learning rate after the 30th epoch for
fine tuning. From Fig. 1(b) and Fig. 2(b),EA also observed
that the quality of the neurons was better in lenet. All of
these visualizations prove lenet’s superiority over shallow.

Width factor: For a specific layer, EA inspected neuron
and neuron cluster learned features from lenet and shallow
in Fig. 1(c) and Fig. 3(a). From observations, he knew
that for layer1, lenet and shallow learned the same type of
features. However, careful scrutiny reveals that lenet em-
ploying more diverse features, indicating shallow network
was under fitting.

In addition, EA focused on neuron multifaceted feature vi-
sualization for detailed analysis. He found that two neu-
rons, the 1st neuron in layer1 of lenet and the 4th neu-
ron in layer1 of shallow, had similar feature facets. The
corresponding multifaceted features are visualized in Fig.
1(d) and Fig. 3(b), respectively. Both neurons mainly de-
tected the same features: light blue edges and dark blue
edges. This thorough analysis indicate that in those net-
works, layer1 neurons learned very similar things. How-

ever, due to the fewer number of neurons, shallow under-
fits.

Depth factor: In Fig. 5(a) and 5(A), through comparing fi-
nal layer features,EA noticed lenet’s cat, dog and bird neu-
ron average features are clearer than those of shallow. This
is obvious, since in shallow, the 1st, 2nd and 3rd features
of cat neuron were dogs and the 4th feature of dog neuron
was horse. Although bird neuron seems pure (all the top
5 are birds), further scrutiny on multifaceted features (Fig.
5(b)) reveals that it mostly concentrates on the discrimina-
tive part of bird without fully considering the background.
This leads to a mostly average feature background. In view
of this, EA concluded that network depth (capturing higher
level features) is one major advantage of lenet.

4.1.2. DIAGNOSING DEEP AND WIDE NETWORKS

After visualizing simple networks, lenet and shallow, EA

attempted much deeper and wider networks, namely lenet-
d and lenet-w (shown in Fig. 4).

Wider network lenet-w: From Fig. 6, EA observed a mild
discriminability degeneration after the 1st epoch (a), and
the network learned representations that were too sparse
(b). It is well known that a sparse representation is bene-
ficial since it reduces noise and outliers, but a too sparse
representation is not a good signal.

(a)
0.087

0.000
0.005
0.006

37.5 34.8

(b)

Fig. 6. The overviews of lenet-w discriminability (a) and density
(b). The digits are density values.

EA concluded by conjecture that: lenet-w is prone to over-
fitting. His reasons came from two observations: 1) Neuron
sparseness: the layer evolution overview shows that layer4
(CONV, Fig. 7(a)) and layer5 (ReLU, 7(b)) neurons have
very minor discriminability. 2) Scant feature diversity: the
features learned by the neurons of layer5 (Fig. 7(c)) show
that the dominant cluster (C1) was composed of dead neu-
rons and that the remaining neuron clusters learned the
same feature: colorful background with bars inside. In fact,
lenet-w overfitted after the 40th epoch and achieved only
77.8% accuracy, verifying EA’s conclusion.

Deep network lenet-d: Using the network discriminability
overview (Fig. 8(a)), EA found that layers in the red block
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Fig. 7. (a) and (b): Layer4 (CONV) and layer5 (ReLU) discrim-
inability evolution overviews of lenet-w. Most neurons keep
steady (dead). (c): Layer5 (CONV) neuron learned features. C1
is the dead neuron cluster.

suffered from unstable optimization. The reason might be a
problem with vanishing/explosive gradients accompanying
the deep structure. With the help of the visualization shown
in Fig. 8(b) he noticed that most CONV (with arrows) and
ReLU layers learned dense representations (large density).
These dense representations are undesirable owing to the
sensitivity to noise and tendency towards overfitting.

(b)

(a)
(b)

(c)

Fig. 8. The overviews of Lenet-d discriminability (a) and density
(b). The digits are density values.

After training terminated, EA checked the lenet-d layer
overview and the learned features to see what happened
inside the network. He discovered that the inner layer
(from the 27th epoch to the 33th epoch) the discriminabil-
ity stayed unchanged, indicating a poor evolution trend
(Fig. 8(c)). Besides, from Fig. 9, he observed that the
neurons had already learned to detect class-wise concepts
(truck/car and ship/dog). Hence, it seems that the network
was premature (learning complex features early), i.e. for-
mer layers are already advanced enough rendering later lay-
ers unnecessary. This added model complexity and a risk

for overfitting. After making these discoveries, to further
check neuron quality, EA looked into the neuron multi-
faceted features shown in Fig. 10, where he found that there
were many pure facets in addition to the highest activated
patterns. From this, EA confirmed for sure that lenet-d was
premature. He initially thought that this was because of the
3 × 3 filter size, RF increased too fast and captured high
level features too early. But actually, lenet-d became over-
fitting after the 28th epoch and the prediction accuracy was
only 79.7%.
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(C0)

(C2)

(C6)

(a)

Fig. 9. Neuron features of lenet-d layer32.

Based on the above analysis, EA came to know that mod-
erate depth, width, and RF size are all vital to network per-
formance. To validate, he applied the network in network
(NIN) (Lin et al., 2013) structure with a self-designed 1×1
filter to restrict the increase of RF. Surely, NIN exhibited
increased layers’ discriminability and moderate density.

4.2. Case Study 2: State-of-the-Art Deep Learning
Techniques Understanding

Expert B (EB), is a fourth year computer vision Ph.D. stu-
dent, focusing on video analysis for action recognition. He
is also interested in designing new deep learning techniques
(e.g. better pooling strategy), so he cares more about under-
standing the mechanism underneath deep models and state
of the art methodologies.

4.2.1. BATCH NORMALIZATION UNDERSTANDING

EB is curious about batch normalization (BN), a simple yet
effective deep learning technique. He knows BN mainly
tries to normalize the CONV layer output to increase CNN
performance. But he is curious about why BN is so ro-
bust to large learning rates and careless initialization. EB
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adopted our system to resolve these questions in practice.

Starting from simple neural networks, EB added BN lay-
ers after every CONV layer of lenet, shallow and NIN net-
works and labeled them lenet-bn, shallow-bn and NIN-bn
networks. He first checked the discriminability overviews
and found that some layers exhibited exceptional patterns
(Fig. 11(a), (b) and (c)). Normally, most layers of a well
trained network will exhibit a general increasing trend in
discriminability, but these selected layers experienced ini-
tially decreasing trends. It was difficult for EB to explain
the reasons for these declines.

(F1)

(F0)

(F2)

(F3)

(F5)

(F4)

(F6)

(b)

Fig. 10. Multifaceted feature visualization of 35th neuron in
lenet-d layer32.

To gain more insight, he switched back to the network den-
sity overview (Fig. 11(A), (B) and (C)) where he learned
that these layers’ densities had the same evolutionary trends
as the discriminabilities. This means that all these lay-
ers originally tried to learn sparse representations. This is
interesting since it signifies that the behavior of discrim-
inability and density are highly consistent after adding BN
layers. He then conducted an experiment: Since lenet-w
was overfitting due to learning a too sparse representation
in layer4, he added a BN layer after layer4 to see the re-
sponse. In Fig. 11(d) and (D), he noticed the consistency as
well – the only difference was that this time layer4 gradu-
ally learned well populated representations to avoid overfit-
ting. Considering these cases, BN seems to motivate spar-
sity/density networks and avoid overfitting through normal-
izing the ReLU input. As for the confusion of neuron dis-
criminability (Fig. 11(a), (b) and (c)), the intuition is that
the normalization and rescaling of BN may shrink the input
range and fail the Wasserstein distance. After all, optimiz-
ing the network discriminability is different from optimiz-
ing a single neuron (Bau et al., 2017).

From the above analysis, EB concluded that BN tends
to learn dense or sparse representations for better perfor-
mance. Actually, in CNNs, BN interplays closely with
ReLU. ReLU enforces the network to learn sparse repre-
sentations by cutting off negative activations. But when a
network tries to learn too sparse representations, BN would
normalize input to larger values and guide ReLU to learn
dense representations, while for the case of a too dense rep-
resentation, BN would normalize ReLU input to smaller
values and learn sparse representations.

4.2.2. ACTIVATION FUNCTION UNDERSTANDING

EB’s other interest is the activation function. Recently, he
noticed that the activation function evolved from sigmoid
to ReLU. He hoped to adopt DV for sigmoid interpretation.

(a)

(A)

(b)

(B)

(c)

(C)

(d)

(D)

Fig. 11. Layers with exceptional discriminability patterns of
lenet-bn (a), shallow-bn (b), NIN-bn (c) and lenet-w-bn (d). (A),
(B), (C) and (D): The corresponding layer density patterns. The
arrows indicate increase or decreaspatterns and heatmaps colors
are encoded locally to visualize layer evolution.

EB trained two new networks, namely lenet-sig1 and lenet-
sig4 (in Fig. 4), which replaced lenet’s 1st ReLU and
4st ReLU layers with sigmoid layers, respectively. From
Fig. 4, lenet-sig1 seems to have a large decrease, which
means the saturation in lenet-sig1 (layer4) appears much
earlier than in the lenet-sig4 (layer11). However, contrast-
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ing Fig. 12(a) and Fig. 1(a), he realized that this tiny in-
fluence really changed the network fine-tuning optimiza-
tion pattern. He later examined the layer discriminability
overviews and found layer10 and layer11 were very un-
usual. In Fig. 12(b), layer10 was very near to the final layer
and should have strong rather than weak increasing trends.
In Fig. 12(c), he noticed that layer11 evolved much too
fast with only minor increased after the 3rd epoch. Since
layer11 was a sigmoid layer, a neuron’s discriminability
stopped increasing after becoming saturated.

Recalling that BN could normalize data, EB employed BN
to alleviate sigmoid saturation. He trained lenet-sig4-bn,
where a BN layer was inserted before the lenet-sig4 sig-
moid layer with over 2% accuracy increase. After check-
ing the layer10 and layer12 discriminability evolutions in
Fig. 12(B) and (C), he found that layer10 had stronger in-
creasing trends, and that layer12 learned steadily and be-
came saturated much later. This provides a good solution
to solve the sigmoid saturation problem and validates the
effectiveness of BN.

(a) (b) (c)

(B) (C)

Fig. 12. (a): Lenet-sig4 discriminability overview. Layers inside
the red rectangle show tiny discriminability dropping down after
30th epochs. (b) and (c): Layer10 and layer11 discriminability
evolutions of lenet-sig4. (B) and (C): Layer10 and layer11 dis-
criminability evolutions of lenet-sig4-bn.

5. Conclusion and Discussion
We presented, DV, a scalable visual analytics approach for
deep neural network inspection in real-time, aiding under-
standing, diagnosis and refinement. To help in this task, we
devised two new and useful quantitative metrics, discrim-
inability and density for layer and neuron evaluation. We
also designed a hierarchical exploration method based on
weighted averages for a multifaceted neuron feature visu-
alization. Based on two case studies, we show the correct-
ness, effectiveness and efficiency of our system.

The bottleneck of DV is rooted in the limitations of the
weighted average image method. There are two essential
aspects: 1) This method could only be applied to vision
datasets, while for NLP and speech datasets, a more uni-
versal method is required for feature exploration; 2) The
average image may conceal some features. For example,
bright colors will be neutralized by dark colors when com-

bined together. We plan to investigate these aspects in fu-
ture work, and conduct further case studies on other types
of networks.
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