
Deep Taylor Decomposition of Neural Networks

Grégoire Montavon1 GREGOIRE.MONTAVON@TU-BERLIN.DE
Sebastian Bach2 SEBASTIAN.BACH@HHI.FRAUNHOFER.DE
Alexander Binder3 ALEXANDER BINDER@SUTD.EDU.SG
Wojciech Samek2,5 WOJCIECH.SAMEK@HHI.FRAUNHOFER.DE
Klaus-Robert Müller1,4,5 KLAUS-ROBERT.MUELLER@TU-BERLIN.DE

1 Department of Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
2 Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany
3 Information Systems Technology and Design, Singapore University of Technology and Design, 487372, Singapore
4 Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713, Korea
5 Berlin Big Data Center (BBDC), Berlin, Germany

Abstract
We summarize the main concepts behind a re-
cently proposed method for explaining neural
network predictions called deep Taylor decompo-
sition. For conciseness, we only present the case
of simple neural networks of ReLU neurons or-
ganized in a directed acyclic graph. More struc-
tured networks with special layers are discussed
in the original paper (Montavon et al., 2015).

1. Introduction
Deep neural networks have become a tool of choice for a
number of machine learning problems from automated im-
age classification (Krizhevsky et al., 2012; Szegedy et al.,
2015) to natural language processing (Collobert et al.,
2011; Kim, 2014). In contrast to their very high predictive
performance, deep networks are often perceived as “black-
boxes”, limiting in practice their even broader applicability,
in particular, for sensitive tasks where a consensus needs to
be reached between the machine learning prediction and
the human expert.

Among the multiple recently proposed techniques for ex-
plaining neural network predictions (Simonyan et al., 2013;
Zeiler and Fergus, 2014; Bach et al., 2015), we can identify
two distinct approaches: sensitivity analyses (e.g. Gevrey
et al., 2003), that find the input variables that causes the
output to vary locally, and decompositions (e.g. Poulin
et al., 2006) that seek to redistribute the function output
on the input variables in a meaningful way.

Presented at the ICML 2016 Workshop on Visualization for Deep
Learning

Techniques such as layer-wise relevance propaga-
tion (Bach et al., 2015) produce a decomposition for deep
neural networks, by building for each neuron a redistribu-
tion rule, and applying these rules in a backward pass until
the input variables (e.g. pixels) are reached. For image
recognition tasks, the procedure results in a “heatmap”
that indicates what pixels of the image are important for
a particular neural network prediction. An example of
pixel-wise decomposition is shown in Figure 1. We can
observe that the classifier output is mainly redistributed on
the pixels representing the actual object to detect, and not
on the background.

convolutional
neural network

class: "cat"

image heatmap

input

output

Figure 1. Image processed by a neural network whose prediction
is decomposed onto input variables. The resulting decomposition
forms a heatmap indicating what pixels in the image are the most
relevant for the prediction.

Parameters of the decomposition procedure (e.g. the choice
of propagation rules) can be selected such that a measure of
quality of the decomposition is maximized. While some
techniques such as “pixel-flipping” (Samek et al., 2015)
have been proposed as a measure of quality, it is still an
open question how to best measure decomposition quality,
and how to do so in a fully unbiased manner.

Here, we use a different strategy: A basic model for de-
composition based on first-order Taylor expansions is con-



Deep Taylor Decomposition of Neural Networks

sidered, and is viewed as correct for a simple class of mod-
els (e.g. single neurons). Then, the model complexity is
gradually increased by constraining the input domain, and
adding multiple layers of neurons, while at the same time
trying to deviate as little as possible from the original de-
composition method. As a result of this iterative process,
we obtain the deep Taylor decomposition method.

2. Decomposing a ReLU Neuron
Consider a simple neuron receiving a real-valued input vec-
tor (xi)i and producing the output

xj = max(0,
∑

ixiwij + bj)

where bj ≤ 0. We would like to decompose the neuron out-
put in terms of input variables. It can be remarked that the
neuron function is linear on the subset of the input space
that produces xj > 0 (we call it “active set”). On this
subset, the output can be written as a first-order Taylor ex-
pansion

xj =
∑
i

∂xj

∂xi

∣∣∣
(xi)i=(x̃i)i

· (xi − x̃i),

where (x̃i)i is a root point in the active set, with near-zero
output, and at which the Taylor expansion is performed.
The decomposition of xj onto input variables is given di-
rectly by identification of the elements of the sum:

[xj ]i =
∂xj

∂xi

∣∣∣
(xi)i=(x̃i)i

· (xi − x̃i)

Note that the property
∑

i[xj ]i = xj is satisfied, and we
say in that case, that the redistribution from xj to (xi)i is
conservative.

One degree of freedom of the analysis is the choice of root
point (x̃i)i at which the Taylor expansion is performed.
Montavon et al. (2015) showed that searching the root point
following a direction (vij)i in the input space starting from
the actual data point (xi)i gives the explicit decomposition
formula

[xj ]i =
vijwij∑
i′ vi′jwi′j

xj (1)

that involves both the neuron orientation and the search di-
rection. A graphical depiction of the root search process
for two different search directions, and two different neu-
rons is given in Figure 2. We study two specifications of
the search direction motivated by constraints on the input
domain, each of them leading to a different redistribution
rule.

2.1. Unconstrained input and the w2-rule

If the input space is unconstrained ((xi)i ∈ Rd), the near-
est root point is obtained by searching along the gradient

direction, i.e. we set vij = wij , and obtain the redistribution
rule

[xj ]i =
w2

ij∑
i′ w

2
i′j

xj .

This rule is called “w2-rule” and can be viewed up
to a constant normalization factor as input sensitivities
((∂xj/∂xi)

2 = w2
ij · 1xj>0) multiplied by the saliency of

the input pattern (as measured by the neuron activation xj),
that is,

decomposition = sensitivity × saliency.

2.2. Positive input and the z+-rule

We consider the case (xi)i ∈ Rd
+ occurring when the neu-

ron receives as input the output of other ReLU neurons.
Searching for a root point along the gradient direction does
not guarantee that it will obey the positivity constraints.
Searching for the nearest root point subject to the positivity
constraints is possible, however it would require solving an
optimization problem.

Instead, we further restrict the search domain by fixing a
search direction (vij)i which is not necessarily optimal, but
for which a root point is guaranteed to be found in the input
domain. One such direction is given by vij = xi · 1wij>0.
That is, we move towards the origin (where xj = 0) in
the subspace of neurons with positive associated weights
such as only negative weighted activations persist, and a
root point is eventually reached. Injecting this new search
direction into Equation 1 gives the redistribution rule

[xj ]i =
xiw

+
ij∑

i′ xi′w
+
i′j

xj ,

where the decomposition on input variables is now deter-
mined based on both the input vector and the weights. This
rule is called “z+-rule” and can be applied to any ReLU
neuron with positive inputs and negative bias.

ReLU neuron

Figure 2. Illustration of a root point search in the two-dimensional
input space of a ReLU neuron, for different choices of weights
(wij)i and bias bj . The data point (xi)i is represented as a black
dot, and the possible root points (x̃i)i are depicted as circles.



Deep Taylor Decomposition of Neural Networks

3. Decomposing a Neural Network
Consider a neural network mapping an input vector (xp)p
to an output scalar xf , through an interconnection of many
ReLU neurons arranged in a directed acyclic graph. The
output neuron xf is first decomposed on its input neu-
rons. Then, the decomposition on these neurons is redis-
tributed on their own inputs, and the redistribution process
is repeated until the input variables are reached. For this
purpose, we define the messages [[xf ]j ]i designating how
much of xf is redistributed from an arbitrary neuron xj to
one of its input xi. Redistributed terms coming from the
neurons (xj)j to which xi contributes are summed:

[xf ]i =
∑

j [[xf ]j ]i

A relevant portion of a simple neural network exhibiting
both redistribution and summing in the propagation phase
is shown in Figure 3.

forward computation backward propagation

Figure 3. Portion of a neural network annotated with relevant vari-
ables, showing a neuron computation xj , and a neuron xi on
which the neural network output is redistributed.

We introduce an induction mechanism that allows us to re-
distribute for any neuron xi its share [xf ]i on its predeces-
sors. Assume that for all neurons (xj)j to which xi con-
tributes, we can write [xf ]j = xjcj , i.e. a product of the
neuron activation and a constant term cj . The following
sequence of equations show that the same holds for [xf ]i:

[xf ]i =
∑

j [[xf ]j ]i =
∑

j [xjcj ]i =
∑

j [xj ]icj = xici

where

ci =
∑
j

w+
ij [xf ]j∑
i′ xi′w

+
i′j

.

The variable ci is indeed approximately constant under a
perturbation of xi due to the latter having its effect in ci di-
luted by summing over many other neurons. As a boundary
condition, the output can also be written as [xf ]f = xfcf
with cf = 1.

Having shown by induction that the decomposition onto
any neuron in the graph has a product structure, and having
made explicit the propagation rule between these neurons,
the decomposition ([xf ]p)p onto the input variables (xp)p
can be easily computed by application of these propaga-
tion rules in a backward pass. Note that because the redis-
tribution rule for each neuron is always conservative, the

decomposition for the whole network is also conservative,
that is,

∑
p[xf ]p = xf .

An application of deep Taylor decomposition to the
GoogleNet neural network (Szegedy et al., 2015) results
for a selected image in the heatmap of Figure 1. Details
of how specific layers are handled in such network, e.g.
pooling layers, normalization layers, input layer, and lin-
ear layers with positive biases, are described in the original
paper on deep Taylor decomposition.

References
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and

W. Samek. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PLoS ONE, 10
(7):e0130140, 07 2015.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. P. Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12:2493–
2537, 2011.

M. Gevrey, I. Dimopoulos, and S. Lek. Review and comparison
of methods to study the contribution of variables in artificial
neural network models. Ecological Modelling, 160(3):249–
264, 2003.

Y. Kim. Convolutional neural networks for sentence classifica-
tion. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 1746–1751,
2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25, pages 1106–1114,
2012.

G. Montavon, S. Bach, A. Binder, W. Samek, and K.-R. Müller.
Explaining nonlinear classification decisions with deep Taylor
decomposition. CoRR, abs/1512.02479, 2015.

B. Poulin, R. Eisner, D. Szafron, P. Lu, R. Greiner, D. S. Wishart,
A. Fyshe, B. Pearcy, C. Macdonell, and J. Anvik. Visual ex-
planation of evidence with additive classifiers. In Proceed-
ings, The Twenty-First National Conference on Artificial In-
telligence, pages 1822–1829, 2006.

W. Samek, A. Binder, G. Montavon, S. Bach, and K.-R. Müller.
Evaluating the visualization of what a deep neural network has
learned. CoRR, abs/1509.06321, 2015.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and
saliency maps. CoRR, abs/1312.6034, 2013.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–9, 2015.

M. D. Zeiler and R. Fergus. Visualizing and understanding con-
volutional networks. In Computer Vision - ECCV 2014 - 13th
European Conference, pages 818–833, 2014.


