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Abstract
Deep convolutional neural networks have
achieved impressive performance on a broad
range of problems, beating prior art on estab-
lished benchmarks, but it often remains unclear
what are the representations learnt by those
systems and how they achieve such performance.
This article examines the specific problem
of saliency detection, where benchmarks are
currently dominated by CNN-based approaches,
and investigates the properties of the learnt rep-
resentation by visualizing the artificial neurons’
receptive fields. We demonstrate that fine tuning
a pre-trained network on the saliency detection
task lead to a profound transformation of the
network’s deeper layers. Moreover we argue
that this transformation leads to the emergence
of receptive fields conceptually similar to the
centre-surround filters hypothesized by early
research on visual saliency.

1. Introduction
Deep convolutional neural networks have achieved great
success in dealing with computer vision problems, such as
image classification (Krizhevsky et al., 2012), object detec-
tion (Girshick et al., 2014) and semantic segmentation (Gir-
shick et al., 2014), etc. However, deep convolutional neu-
ral networks are complex non-linear system, and what is
learnt by intermediate layers remain in most case mysteri-
ous. In addition, despite high performance on many bench-
marks, recent published research has demonstrated that de-
spite high performance on benchmark measures, deep net-
works could be easily fooled by small perturbations of the
original signal (Moosavi-Dezfooli et al., 2016), begging
the question what are the representations learnt by the net-
works and how they are used to answer the chosen task (ie,

1Department of Computer Science, College of Engineering,
Mathematics and Physical Sciences, University of Exeter, UK..
Correspondence to: Sen He <sh752@exeter.ac.uk>, Nicolas
Pugeault <N.Pugeault@exeter.ac.uk>.

2nd Workshop on Visualization for Deep Learning in the 34 th

International Conference on Machine Learning, Sydney, Aus-
tralia,2017. Copyright 2017 by the author(s).

do we recognise a bunny by its ears or by the texture of its
fur?). For this reason, it becomes increasingly important
for scientists to investigate what is learnt by such networks
and what features deep artificial neurons are attuned to, in
a way not dissimilar to what neuroscientists did for the hu-
man visual cortex.

(a) input
(b) encoder-decoder network

(c) output

Figure 1.1. The architecture (the encoder part is fine tuning from
VGG-19 convolutional part) we developed for saliency predic-
tion, which is competitive with the state-of-the-art on MIT300
saliency benchmark (Bylinskii et al., 2015).

In this article, we are concerned with the task of predict-
ing image saliency. Saliency can be defined as how likely
a visual pattern is to attract a human viewer’s gaze when
observing the image. Visual saliency has been the sub-
ject of intense study over the last decades, both in psychol-
ogy and computer vision (Borji & Itti, 2013), and recent
publications have demonstrated that deep neural networks
can achieve very high performance on this task (Bylinskii
et al., 2016). We will use a recently developed architec-
ture (see Figure 1.1) for saliency detection based on a stan-
dard CNN encoding (so-called VGG19 (Simonyan & Zis-
serman, 2014)), and visualise the receptive fields of the ar-
tificial neurons before and after fine-tuning (the CNN en-
coder is pre-trained on a standard ImageNet classification
task). We demonstrate that after fine-tuning the network
for the task, the deeper neurons have evolved vastly dif-
ferent receptive fields to the pre-trained neurons, and dis-
play characteristic patterns that evoke the centre-surround
difference paradigm hypothesized by early psychophysical
research (Treisman & Gelade, 1980).

2. Related Work
With the rise in popularity of deep convolutional neural
networks, several groups have recently attempted to visu-
alise which features a network has learned. Zeiler & Fergus
(2014) proposed to back-propagate feature maps obtained
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Figure 1.2. The model used in this paper, we try to visualise the
general patterns of the encoder part in Figure 1.1 that would acti-
vate the red pooling layers

by processing a specific image through the network, in or-
der to visualise the image content that activated the fea-
ture maps. Yosinski et al. (2015) follow a similar approach
to develop a tool for deep visualisation, and additionally
proposed an approach to visualise features of each layer
via regularised optimisation in image space. Nguyen et al.
(2015), they found that the deep neural networks are eas-
ily fooled, and use evolutionary algorithm and gradient as-
cent method to derive a pattern that the network has a high
confidence to determine the derived pattern is belong to a
specific class.

In contrast, we manually clamp the value of single neu-
rons selected from intermediate layers in the network, and
back-propagate the activation to the image space, thus de-
riving the optimal activation pattern for individual selected
neurons. Hence, this visualisation provides us with an un-
derstanding of what patterns the deep representations have
become attuned to.

3. Methods
In this work we will be concerned with visualising the input
patterns most strongly related to individual neurons in the
network. In the following we will call these patterns as the
neurons’ receptive fields, in analogy to biological neurons.

In deep convolutional neural networks, the forward pass
typically consists of three main processes: convolution,
non-linearity (usually a ReLU function) and pooling. Sim-
ilarly, the visualisation of neural patterns are produced by
three similar processes, in reverse order: that is, upsam-
pling, deconvolution, and non-linearity (again, ReLU). We
will describe the three processes in turn.

3.1. upsampling

The purpose of upsampling is to recover the gradually re-
duced resolution caused by pooling in the forward pass.

The classic upsampling method in feature visualisation is
unpooling, using the pooling indices in the forward pass to
do unpooling—see Figure 3.1.

Figure 3.1. classic upsampling method

Because pooling indices only exist when processing an ac-
tual image through the network, these indices are not avail-
able when visualizing a neuron’s receptive field in abstrac-
tion from any input. Hence, in order to visualize individual
neuron’s receptive fields, we set the pooled feature map as
a sparse matrix (with only one non-zero value) and do up-
sampling by repeating this sparse matrix—see Figure 3.2 .

Figure 3.2. upsampling by repeating the sparse feature map, c is a
constant

3.2. Deconvolution

Convolution is the key process in the forward pass of the
convolutional neural network, as it is the one that is tuned
by back-propagation during training. It can be formulated
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as:

O = I ∗ F (1)

where O is the extracted feature map, I is the input and F
is the learnt filter. Reconstructing the input pattern I which
activated an extracted feature map O, can be formulated as
follows:

A = O ∗ FT (2)

where O is the extracted feature map in the forward pass,
FT is the transpose of the learned filter and A is the content
in the input I which activated O.

3.3. Relu

the ReLU function in feature visualisation is the same as
that in the forward pass of deep convolutional network,
which only leave the positive components of the input, and
can be formulated as:

f(x) = max(0, x) (3)

4. pattern visualisation
In this part, we show the general patterns learnt by fine-
tuning the network on a saliency prediction task, as well
as the patterns for the original VGG-19 network, pre-
trained on classification on ImageNet. Additionally, we
also visualise individual neurons’ receptive field by clamp-
ing them and back-projecting to the input domain as de-
scribed above.

4.1. VGG pattern and salient pattern

Figures 4.1 to 4.5 contrast the receptive fields learnt by neu-
rons in various layers of the network, both before and after
fine-tuning on the saliency detection task.

Figure 4.1. the 64 general salient(left) and vgg(right) patterns for
the first pooling layer

Figure 4.2. the first 64 (128 in total)general salient(left) and
vgg(right) patterns for the second pooling layer

Figure 4.3. the first 64 (256 in total) general salient(left) and
vgg(right) patterns for the third pooling layer

Figure 4.4. the first 64 (512 in total)general salient(left) and
vgg(right) patterns for the fourth pooling layer

Figure 4.5. the first 64 (512 in total)general salient(left) and
vgg(right) patterns for the fifth pooling layer

In those figures, we can see little differences between the
neurons’ receptive fields in the first three pooling layers af-
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ter fine-tuning. Some patterns are the same as the edge
pattern. However, when considering deeper layers, fun-
damentally different patterns arise in the neurons’ recep-
tive field after fine-tuning for the saliency task: after fine
-tuning the deep neurons all appear to have attuned to vari-
ations of central-surround patterns. Interestingly, such pat-
terns emerge solely through the process of fine-tuning the
network, starting from vastly different receptive fields, and
they appear to be consistent with theoretical and experi-
mental research on saliency by psychologists.

4.2. Pattern Propagation

In a second experiment, we illustrate how the different pat-
terns yield different levels of activation to specific deep
neurons. This is achieved by clamping a neuron-specific
output to a constant value from 0.5 to 3. These results are
recorded in Figure 4.6. From the figure above, when in-

Figure 4.6. the pattern propagation by increasing the constant
value (from left to right,up to down)

creasing the neuron’s output value its receptive field shows
patterns that propagates like the water wave propagation.
We argue that the constant in the sparse matrix is the energy
of the pattern, the higher energy of a pattern, the wider it
will propagate.

4.3. Pattern Validating

In the previous sections, we have shown that the proposed
visualisation strategy can be used to illustrate the patterns
learned by deep neurons in a network. In this section we
verify that those back-propagated patterns actually activate
the selected neuron. An additional question is how such
patterns affect other neurons in the same layer. This is
tested in a straightforward manner by feeding the back-
propagated pattern as an input to the network. Note that
due to the pooling process in the forward pass, the resulted
pooling feature map may not the same as the clamped
sparse matrix used to generate the pattern. We check the
activation by the summation of the pooled feature map—

see Figure 4.7.

Figure 4.7. the activation of the first general pattern to the fifth
pooling layers(512 neurons)

From this figure, we can see that the first pattern indeed
activate the first neuron, as expected. Furthermore, some
other neurons have higher activation, demonstrating that
the network has developed some redundancy in its coding,
whereas other neurons are inhibited. We argue that this
is because most of the learned general patterns are simi-
lar (central surround difference), some neurons are more
sensitive to the central surround difference pattern; and for
those neuron that are inhibited is due to the lateral inhi-
bition (Ratliff et al., 1967) which is also used in local re-
sponse normalisation (Krizhevsky et al., 2012) when train-
ing the deep neural network.

5. Conclusion
In this article we proposed a novel approach for visual-
ising the representations learnt by deep neural networks,
and specifically to visualise the receptive fields of individ-
ual deep neurons. We have demonstrated this approach
to a VGG-19 network pre-trained on ImageNet classifi-
cation and fine-tuned for the task of saliency detection.
Importantly, we demonstrate that this approach can re-
veal important insights in what is learnt by the network to
achieve its high performance: receptive fields are shown
to change drastically from the original VGG-19 represen-
tation to characteristic centre-surround patterns. Interest-
ingly, these emergent patterns are consistent with the psy-
chological theories of saliency. This demonstrates that such
a visualisation offers an important tool for interpreting the
workings of deep neural networks.

To sum up, by manually set the feature map as a sparse ma-
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trix, we derive a set of general patterns for the deep neural
network. We also double check the resulted general pat-
terns by forwarding it into the network, which show those
general patterns are not illogical and follow the evidence in
neurobiology.
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