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Abstract
We propose Network Dissection1, a framework
for quantifying interpretability of the units inside
a deep convolutional neural networks (CNNs).
Different vocabularies of interpretable units as
object detectors have emerged from the networks
trained for object recognition on ImageNet and
scene classification on Places respectively. We
reveal that the interpretations of units evolve
over the training iterations both in the stage of
the train-from-scratch and the stage of the fine-
tuning between data sources. The interpretations
of units is further used as explanatory factors for
the deep features used for visual recognition.

1. Introduction
Previous efforts to interpret the internals of a convolu-
tional neural network have focused on visualizations, for
example, visualizing image patches that maximize individ-
ual unit activations (Zeiler & Fergus, 2014; Zhou et al.,
2015); or using optimization to generate patterns and re-
gions salient to a unit (Mahendran & Vedaldi, 2015; Si-
monyan et al., 2014; Zeiler & Fergus, 2014; Nguyen et al.,
2016); or rendering representation space using dimension-
ality reduction (Maaten & Hinton, 2008; Jolliffe, 2002).
Though the visualizations give us the intuition about what
image patterns the units are supposed to detect, the results
are rather qualitative and cannot be interpreted quantita-
tively, i.e. which concept label the detected image patterns
belong to and how accurate the unit detects that concept.
Therefore they leave open the question of how to quantify
and compare interpretations of the deep visual representa-
tions.

Recently we propose a framework called Network Dissec-
tion to quantify the interpretability of any given CNNs (Bau
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et al., 2017). Our work quantifies interpretability by defin-
ing a benchmark for the emergence of detectors for inter-
pretable visual concepts. Quantifying interpretability al-
lows us to ask and answer whether interpretability is a prop-
erty of the embedding or the overall representation; and
whether and how different network architectures, training
supervisions, and training regularization affect the inter-
pretability of learned representations.

2. Overview of Network Dissection
To measure interpretability, we evaluate the ability of each
hidden unit to solve segmentation problems from a dictio-
nary of human-interpretable visual concepts.

2.1. Broden: Broadly and Densely Labeled Dataset

As a dictionary of visual concepts, we construct the
Broadly and Densely Labeled Dataset (Broden), which
unifies several densely labeled image data sets: ADE (Zhou
et al., 2017), OpenSurfaces (Bell et al., 2014), Pascal-
Context (Mottaghi et al., 2014), Pascal-Part (Chen et al.,
2014), and the Describable Textures Dataset (Cimpoi et al.,
2014), containing a broad range of labeled classes of ob-
jects, scenes, object parts, textures, and materials, with
most examples labeled at the pixel level.

2.2. Scoring Unit Interpretability

Let c denote any concept within the Broden dataset and let
k denote any convolutional unit in a CNN. Network dis-
section defines the quality of the interpretation c for unit
k by quantifying the ability of k to solve the segmentation
problem given by c using this IoU score:

IoUk,c =

∑
|Mk(x) ∩ Lc(x)|∑
|Mk(x) ∪ Lc(x)|

, (1)

In the above, x represents an image in the Broden dataset,
Lc(x) is the set of pixels labeled with concept c, and Mk(x)
is binary mask selecting those pixels that lie within areas of
highest activation of unit k. Mk is computed by (bilinearly)
upsampling the activation of k on input x, and applying a
threshold Tk that selects a fixed quantile (0.5%) of the pix-
els over the entire dataset. Because the data set contains
some categories of labels (such as textures) which are not
present on some subsets of inputs, the sums are computed

http://netdissect.csail.mit.edu
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Figure 1. Scoring unit interpretability by evaluating the unit ac-
tivation for semantic segmentation. Unit activation map is used
to segment the top activated images, localizing the favorite im-
age patterns for that unit. The activation map is further used to
segment the annotation mask to compute the IoU.

only on the subset of images that have at least one labeled
concept of the same category as c. Figure 1 gives one ex-
ample of computing the IoU over the top activated images
with semantic segmentation annotations.

The value of IoUk,c is the accuracy of unit k in detecting
concept c. In our analysis, we consider a unit k as a detector
for concept c if IoUk,c > 0.04, and when a unit detects
more than one concept, we choose the top scoring label. To
quantify the interpretability of a layer, we count the distinct
concepts detected, i.e., the number of unique detectors.

Network dissection is applied to the last convolutional layer
of the testing networks. Figure 3 shows the histogram of
units identified as object detectors from the AlexNet and
ResNet trained on ImageNet and Places respectively. Each
class might have several detectors. For example, for the
networks trained on ImageNet, the most frequent detectrors
are dog detectors. For the networks trained on Places, the
most frequent detector in AlexNet is water detector, while
the most frequent detector in ResNet is airplane detector.
Comparing the networks trained on ImageNet and Places,
we can see those networks learn quite different set of object
vocabularies. If we keep the network architecture the same,
there are more object detectors emerged in the network
trained for scene classification (Places). Figure 2 shows
some exemplar detectors from the two networks trained on
Places and ImageNet.

3. Applications
3.1. The emergence of concepts over training iterations

Figure 4 plots the interpretability of snapshots of the base-
line model (AlexNet trained on Places205) at different

Figure 2. For each of the two concepts House and Dog, two hid-
den units from the ResNet and AlexNet are shown as object de-
tectors respectively. The IoU scores are shown above the visual-
ization.

training iterations along with the accuracy on the validation
set. We can see that object detectors and part detectors be-
gin emerging at about 10,000 iterations (each iteration pro-
cesses a batch of 256 images). We do not find evidence of
transitions across different concept categories during train-
ing. For example, units in conv5 do not turn into texture
or material detectors before becoming object or part detec-
tors. From the plot with the validation accuracy,

In Figure 5, we keep track of two units over different train-
ing iteration. We observe that the units start converging to
the semantic concept at early stage. For example the first
unit detects road first before they start detecting car.

3.2. Transfer learning between Places and ImageNet

Fine-tuning the pre-trained network such as ImageNet-
CNN to another target source is a transfer learning tech-
nique commonly used. It makes the training converge
faster and results better accuracy especially if there is not
enough training data at the target source. Here we would
like to see how the interpretation of the internal units evolve
during different stages of the transfer learning.

Given well trained Places-AlexNet and ImageNet-AlexNet,
we fine-tune the Places-AlexNet on ImageNet and fine-tune
the ImageNet-AlexNet on Places respectively. The inter-
pretability results of the snapshots of the networks over the
fine-tuning iterations are plotted in Figure 6. We can see
that the training indeed converges faster compared to the
network trained from scratch on Places in Figure 4. The
semantics of units also change over fine-tuning. For exam-
ple, the number of unique object detectors first drop then
keep increasing for the network trained on ImageNet being
fine-tuned to Places365, while it is slowly dropping for the
network trained on Places being fine-tuned to ImageNet.
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AlexNet: Detector No.=49, Unique Detector No.=21
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ResNet: Detector No.=858, Unique Detector No.=75
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AlexNet: Detector No.=81, Unique Detector No.=40
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ResNet: Detector No.=774, Unique Detector No.=84
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Figure 3. The object vocabularies of networks learned from two different data sources a) ImageNet and b) Places. The emergent object
vocabularies used by the networks differ across the training datasets.
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Figure 4. The interpretability of the units at conv5 layer of the
baseline model over training iteration. The validation accuracy is
also plotted. The baseline model is trained to 300,000 iterations
(marked at the red line).

Figure 5. The plot of IoU for the top concept associated with two
units over different training iteration. The final concept of each
unit is shown above, while the intermediate concepts associated
with the units are shown below.
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Places365 to ImageNet
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Figure 6. Fine-tune networks between ImageNet and Places. a)
ImageNet to Places365 and b) Places365 to ImageNet. The vali-
dation accuracy is shown below. The network architecture is the
same as AlexNet.

Figure 7 shows the concept evolution of the four units in
the network fine-tuned from ImageNet to Places365 and
reversely. The top associated concepts keep evolving dur-
ing the fine-tuning process. For example, in the network
fine-tuned from ImageNet to Places365, the first unit which
detects the white dog before, evolves to detect the water-
fall; the second unit which detects the green concept first,
evolves to detect the baseball field. On the other hand, in
the network fine-tuned from Places365 to ImageNet, units
detecting different concepts converge to detect dog-relevant
concepts such as ear and dog head. Interestingly though
those units are mutated to detect different concepts, some
of them remain to have similar colors or textures.
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Figure 7. The top associated concepts evolve for four selected
units in the networks being fine-tuned. The two units above
are from the network fine-tuned from ImageNet to Places365,
while the two units below are from the network fine-tuned from
Places365 to ImageNet. Above each plot of the IoU we show the
unit visualization before and after fine-tuning.

3.3. Explanatory factors for the deep features

After we quantify the interpretations of the units inside the
deep visual representation, the unit activation along with
the interpreted label could be used as the explanatory fac-
tors for analyzing the prediction given by the deep features.
Previous work (?) uses the weighted sum of the unit ac-
tivation maps to highlight which image regions are most
informative to the prediction, here we further decouple at
individual unit level to segment the informative image re-
gions.

We first plot the Class-specific units. After the linear SVM
is trained, we can rank the elements of the feature accord-
ing to their SVM weights to obtain the elements of the deep
features which contribute most to that class. Those ele-
ments are units that act as explanatory factors, and we call
those top ranked units associated with each output class
class-specific units. Fig.8 shows the class-specific units
of ResNet152-ImageNet and ResNet152-Places365 for one
class from action40 and sun397 respectively. For example,
for the Walking the dog class from action40, the top three
class-specific units from ResNet152-ImageNet are two dog
detection unit and one person detection unit; for the Picnic
area class from sun397, the top three class-specific units
from ResNet152-Places365 are plant detection unit, grass
detection unit, and fence detection unit. The intuitive match
between visual detectors and the classes they explain sug-
gests that visual detectors from CNNs are behaving like the
bag-of-semantic-words visual features.

We further use the individual units identified as concept de-

Images	from	Walking	the	dog	(action40)

ResNet152-ImageNet ResNet152-Places365 ResNet152-ImageNet ResNet152-Places365

Images	from	Picnic	area	(sun397)

Figure 8. Class-specific units from ResNet152-ImageNet and
ResNet152-Places365 on one class from action40 and sun397.
For each class, we show three sample images, followed by the
top 3 units from ResNet152-ImageNet and ResNet152-Places365
ranked by the class weight of linear SVM to predict that class.
SVM weight, detected concept name and the IoU score are shown
above each unit.

tectors to build an explanation of the individual image pre-
diction given by a classifier. The procedure is as follows:
Given any image, let the unit activation of the deep feature
(for ResNet the GAP activation) as [x1, x2, ..., xN ], where
each xn represents the value summed up from the activa-
tion map of unit n. Let the top prediction’s SVM response
be s =

∑
n wnxn, where [w1, w2, ..., wN ] is the SVM’s

learned weight. We get the top ranked units in Figure 9 by
ranking [w1x1, w2x2, ..., wNxN ], which are the unit acti-
vations weighted by the SVM weight for the top predicted
class. Then we simply upsample the activation map of the
top ranked unit to segment the image.

The image segmentation using the individual unit activa-
tion are plotted in Fig. 9a. The unit segmentation explain
the prediction explicitly. For example, the prediction for
the first image is Gardening, the explanatory units detect
plant, grass, person, flower, and pot. The prediction for
the second image is Riding a horse, the explanatory units
detect horse, fence and dog. We also plot some wrongly
predicted samples in Figure 9b. The segmentation gives
the intuition why the classifier made mistakes. For exam-
ple, for the first image the classifier predicts it as cutting
vegetables rather than the true label gardening, because the
second unit wrongly consider the ground as table.

4. Conclusion
In this work we apply the newly proposed framework Net-
work Dissection to analyze the evolution of the interpreta-
tions of units over the training iterations. We further show
that the interpretations of units are explanatory factors for
the deep features used in the visual recognition.
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Correct label: gardening Correct label: brushing
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Figure 9. Segmenting images using the top activated units weighted by the class label from ResNet152-Places365 deep feature. a) the
correctly predicted samples. b) the wrongly predicted samples.
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