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Abstract
Although many powerful visualization tools have
been developed to interpret neural network deci-
sions in input space, methods to interpret feature
map space remain limited. Most existing tools
examine a network’s response to a specific in-
put sample and thus are locally faithful to that
sample. We introduce DeepResolve, a gradient
ascent based method that visualizes intermediate
layer feature maps in an input independent man-
ner. We examine DeepResolve’s capability to 1)
discover network linear and non-linear combina-
torial logic and summarize overall knowledge of
a class, 2) reveal key features for a target class,
3) assess a network’s activeness in pattern learn-
ing and network’s vulnerability in feature space,
and 4) analyze multi-task class similarity at high
resolution. We demonstrate the value of Deep-
Resolve on synthetic and experimental genomic
datasets, and DeepResolve reveals biologically
interesting observations from the experimental
data.

1. Introduction
Deep learning has proven to be powerful on a wide range
of tasks in computer vision and natural language process-
ing (Krizhevsky et al.; Szegedy et al., a; Simonyan & Zis-
serman, 2015; Sutskever et al.; Bahdanau et al.), and these
successes have motivated efforts to (1) characterize the
individual input features that are detected and (2) inter-
pret how input patterns are combined in a given network
layer. Recently, several applications of deep learning in
genomic data have shown deep learning’s capability to out-
perform conventional methods across a variety of predic-
tion tasks, such as transcription factor (TF) binding predic-
tion (Alipanahi et al., 2015; Zeng et al.; Zhou & Troyan-
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skaya, 2015), DNA methylation prediction (Zeng & Gif-
ford, 2017; Angermueller et al.), and enhancer-promoter
interaction prediction (Singh et al.). However, the con-
struction of deep neural networks makes the interpretation
of these trained models difficult (Castelvecchi, 2016), and
thus limits model derived biological insight.

Recent computer vision studies have proposed effective
ways to visualize and interpret deep neural networks by
exposing their hidden model representations in input space
with gradient based or activation map based methods, in-
cluding de-convolutional networks (Zeiler et al., 2010;
Zeiler & Fergus, 2014), saliency map (Simonyan et al.,
2014), guided back-propagation (Springenberg et al.),
layer-wise relevance propagation (Bach et al., 2015),
DeepLIFT (Shrikumar et al.) and LIME (Ribeiro et al.).
These methods aim to understand the response of a net-
work to specific input examples, and provide a fine-grained
visual interpretation of network response by highlighting
relevant input data. While this work-flow is visually inter-
pretable and can be validated by observation, it has the lim-
itation of being only locally faithful to the model because
it is based upon the selection of an input. The non-linearity
and complex combinatorial logic in neural network may
limit network interpretation from a single input. In order to
extract generalized class knowledge multiple input samples
need to be used with post-processing steps to get an overall
understanding of a class.

Another class of methods for interpreting networks use
only the network itself and do not start with reference in-
puts to annotate, but instead directly synthesize novel in-
puts that maximize the activation of the network. For ex-
ample, (Simonyan et al., 2014), uses gradient ascent on
the input space to maximize the predicted score of a class,
and DeepMotif (Lanchantin et al., 2016) is an implementa-
tion of this method on genomic data. These gradient-ascent
methods are different from input-dependent methods in that
they explore the input space freely and are not biased to-
wards a specific region of input space. Thus this type of in-
terpretation may be more faithful to all aspects of the model
because it generates a ‘class model’ that represents the ac-
tivation of a whole class, instead of a response to a spe-
cific input. However, the stochastic nature of these meth-
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ods makes them less stable than input-dependent methods,
and the images they generates are considered to be unnatu-
ral (Nguyen et al., 2015). Some even use them to generate
adversarial noise (Goodfellow et al.) to study the vulnera-
bility of a network. Potential reasons for this unnaturalness
has been previously explored (Szegedy et al., b; Goodfel-
low et al.), and regularization methods have been studied
to generate images that look more natural (Yosinski et al.,
2015), however the improvement is still limited. One ex-
planation is that when gradient ascent methods perform for-
ward and backward propagation between a network’s input
layer and output layer, the many non-linear units that are
present in the network can cause the methods to get stuck
in a bad local maximum.

While many network interpretation methods provide visual
summaries of desired inputs, few methods have focused on
the interpretation of feature maps that encode how input
patterns are combined in a given network layer. This is
in part because feature maps are difficult to represent intu-
itively in visual form. However, feature maps can reveal
key semantic information as well as the parts of a network
that are important for a specific task for detector discovery
and transfer learning. Thus, exposing key elements in fea-
ture space is essential for full understanding of a network.
Moreover, directly visualizing input space is only partially
informative in biological studies when compared computer
vision studies, as in biological studies the combinatorial
rules reveal mechanism. Previous work put limited effort
in examining how to interpret feature map space in a way
that relates to these combinatorial rules. Bolei et al. (Zhou
et al.) proposed Class Activation Mapping (CAM) using a
global average pooling layer which can learn a linear im-
portance coefficient for each feature map in the last convo-
lutional layer. Selvaraju et al. (Selvaraju et al., 2016) used
gradient flow from output to the last convolutional layer to
calculate a locally faithful feature map importance weight
in their grad-CAM, which replace global average pooling.
While these authors notice the class-specificity of a feature
map importance pattern, they used it as a weight for an
activation map to localize visual interpretation of a class,
instead of viewing it as an independent representation of
a class. Furthermore, these methods are either limited to
specific network architectures or are input dependent.

Here we introduce DeepResolve, a new approach to fea-
ture map interpretation that works on all architectures and
is reference input free. DeepResolve computes layer spe-
cific feature maps that summarize how a network com-
bines elemental layer specific features to predict a spe-
cific class. The core approach of DeepResolve is to re-
solve the meaning of an intermediate layer by decompos-
ing a network’s upper and lower layer network compo-
nents referenced from the intermediate layer and visualiz-
ing their function. DeepResolve inverts upper network lay-

ers with gradient ascent since they typically contain fewer
non-linear units than lower network layers. We then use
this visualization to guide the choice of neurons to invert
in lower layers. The lower layers are then decomposed
and analyzed using DeepResolve. Our proposed method
requires no input dataset and is efficient.

Unlike images which contain complex features such as
styles and scale, genomic sequences are simple strings of
4 letters, which are typically one-hot encoded into a 2-D
array (see Figure 1). These 2-D arrays are used as inputs
that are observed by 2-D convolutional filters. In genomic
applications, lower level convolutional filters capture short
patterns called motifs, which are represented as weights
on each nucleotide in each position, while upper layers
learn the combinatorial logic or ‘grammar’ of these mo-
tifs. (Zeng et al.) showed that for the purpose of predicting
functionality of genomic sequences, deeper networks are
not necessarily better than shallower ones. Empirically, one
or two convolutional layers with two fully connected layers
can achieve good performance. Since the focus of this re-
port is the interpretation of intermediate layer feature maps,
we focus on genomic datasets because of the simplicity of
their lower level convolutional layers and the importance of
discovering combinatorial logic in biology. To test Deep-
Resolve we constructed synthetic genomic datasets with
specific logic and validated that DeepResolve recovered
this logic.

In summary, DeepResolve interprets network class based
behavior in a input-free manner with gradient ascent on
intermediate layers; it is efficient and requires no input
dataset or post-processing steps; it reveals key features
of a target class and discover both linear and non-linear
combinatorial logic that a network learns; it assess a net-
work’s activeness in pattern learning, and it discovers a net-
work’s vulnerability in feature space. It can also be used
to analyze class similarity and difference in high resolu-
tion. The remaining four sections of this paper discuss
how DeepResolve computes class-specific feature impor-
tance maps and evaluate neuron importance (Section 2),
DeepResolve’s ability to recover combinatorial interactions
from synthetic data and to assess the learning activeness
and vulnerability in feature space (Section 3), a method to
compute feature similarity across classes in a multi-class
model (Section 4), and the benchmarking of DeepResolve
on a TF binding prediction task and a DeepSEA network
interpretation task in comparison to contemporary methods
(Section 5).
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Figure 1. Illustration of DeepResolve’s working flow. After a network is trained and an intermediate layer is selected, DeepResolve
first computes the feature importance maps (FIM) using gradient ascent for multiple runs with different random initializations. After
each run, it takes the global average of FIM scores for each neuron to compute Neuron Importance Vectors (NIV). Each position in the
NIV represents a neuron. The variance in each position of the NIVs from different runs is then calculated, and used as an indicator
for potential non-linear behavior of a neuron. The NIVs are then combined neuron-by-neuron with the reference to the magnitude of
its variance, such that both non-linear and linear logic can be resolved. This process generates an Overall Neuron Importance Vector
(ONIV) for each of the output classes, which summarize all ‘favored’ and ‘unfavored’ patterns of a class. We then explore ONIV’s
capability to propose key elements for a specific class, assess learning activeness and help interpret vulnerability of the network. Finally,
we use the non-negative ONIVs to analyze class similarity and the ONIVs to analyze class differences.

2. We compute a class specific Feature
Importance Map and Neuron Importance
Vector

DeepResolve uses a gradient-ascent based method in the
similar manner as (Simonyan et al., 2014) to compute a
class-specific optimal ‘image’ H in an intermediate layer
that maximize the objective function:

Hc = arg max
H

Sc(H)− λ||H||22

Sc is the score of class C, which is the C-th output in the
last layer before taking the sigmoid or soft-max, and H
consists of feature maps {Hk} for all the K neurons of the
selected intermediate layer. We call Hc a feature impor-
tance map (FIM) for class C. As shown in Figure 1, for
networks using genomic sequences as input, when the the
relevant convolutional layer uses global max-pooling, the
FIM is a 1-D vector directly indicating the importance of
the motif each filter is capturing, whereas for convolutional
layer with local max-pooling, the FIM is a 2-D map of
the importance of each filter in different pooling position.

The later provides extra information about the spatial dis-
tribution of a sequence pattern. In image classification net-
works, the FIM is 3-D for convolutional layers with local
max-pooling, and 1-D for layers with global max/average
pooling.

We then compute neuron importance score φck for each of
the K neurons by taking the global average of the feature
importance map (Hk)c of that neuron:

φck =
1

Z

∑
i,j

(Hk
i,j)

c

Where (i, j) stands for different positions in a 2-D feature
map of a neuron ( it is φck = 1

Z

∑
i(H

k
i )c for neurons

that output 1-D feature map, and φck = (Hk)c for neurons
that use global max/average pooling). We carefully pick
the layer for feature importance map generation such that
neurons in this layer capture local sequence patterns that
are as short as possible (comparable with motifs). Mean-
while the layer selected should not be too far away from
the output because additional subsequent non-linear layers
increase uncertainty. For most of the classic networks for
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predicting functional regulatory elements (Alipanahi et al.,
2015; Zeng et al.), the optimal choice is the layer located
in the border of fully connected layers and convolutional
layers. For DeepSEA(Zhou & Troyanskaya, 2015) which
has 3 convolutional layers, we chose the input to last con-
volutional layer.

For each target class C, we run gradient ascent multiple
times (T times) using different random input initializations
sampled from normal distribution. This generates a set of
FIMs {Hc

t } for each class. Note that although the natural
domain of feature map space is R+

0 , we allow FIMs to have
negative values during gradient ascent. We found such that
negative terms are interpretable and contain rich informa-
tion about the reasoning of networks decisions. For each
generated Hc

t of class C, we calculate neuron importance
scores {(φck)t} for every neuron which gives a neuron im-
portance vector (NIV) Φc

t = ((φc1)t, (φ
c
2)t, ..., (φ

c
k)t), from

which we extract model faithful interpretations of the net-
work.

3. DeepResolve helps interpret combinatorial
logic in feature space

3.1. NIV recovers non-linear combinatorial logic

As mentioned in the previous section, we repeat gradient
ascent multiple times and generate a set of FIMs {Hc

t } and
NIVs {Φc

t} for each class. We evaluate the variance of
each position of NIVs, and observe that some neurons are
much less stable than others with different initializations,
which indicate that their contribution to the output can’t
be combined additively. We define this type of neurons as
non-linear neuron and propose to use the variance of NIVs
as an indicator of the non-linearity of a neuron. We fur-
ther observe that the non-linear neurons can be interacting
with each other following certain non-linear combinatorial
logic, and the NIVs can be used to help discover the pres-
ence of non-linear logic.

To test the ability of this method to recover non-linear input
feature relationships we created Synthetic Dataset I with
XOR logic. This dataset contains 40000 synthetic DNA
sequences that are strings containing only A,T,C,G. The se-
quences are 200 base pairs (bp) long, with each base ran-
domly selected from the 4 nucleotides as background. We
then placed 2 sequence patterns (CGCTTG, CAGATG) into
random position in the 40000 sequences. We label a se-
quence 1 when only one of the patterns presents, and oth-
erwise 0. We trained a convolutional neural network with 1
convolutional layer containing 32 filters of size 8, followed
by local max-pooling with stride size 4. We used 2 fully
connected layers with 64 hidden units, and the AUC on
the held-out 20% test set is 0.909. To verify that DeepRe-
solve can recover the non-linear logic in Synthetic Dataset

Figure 2. Neuron importance vectors (NIV) generated by all 10
runs of gradient ascent for dataset I. Neuron #11 and #30 always
end up having opposite signs indicating that they are probably
interacting in a XOR logic. The variance plot on the bottom high-
light these neurons. For NIVs, each red circle on the X-axis rep-
resents a neuron with a positive NIV value and a blue circle rep-
resents a neuron with a negative NIV value. Circle size is propor-
tional to the absolute NIV value, and to the variance value.

I we generated feature importance maps and neuron impor-
tance vectors {Φc

t} for the last convolutional layer. Fig-
ure 2 visualize the neuron importance vectors {Φc

t} of all
10 runs, and the variance per position. The filter weight
matrix is converted into position weight matrix (PWM), a
commonly used representation of motifs in biology stud-
ies, by setting all the negative terms to zero and rescale
each column to have inner column sum of 1. The inter-
esting motifs are visualized using seqlogo, a commonly
used visualization tool in motif study. Each position in a
seqlogo corresponds to a column in the PWM and each
letter corresponds to a nucleotide. The heights of the letters
are proportional to the weight assigned to that nucleotide
within each column, and the total height of the letters in a
position is scaled by the information content (entropy) of
that position. As shown in Figure 2, with different initial-
ization, the filter 30 capturing CAGATG and filter 11 cap-
turing CGCTTG always end up having opposite sign. This
is suggesting that these two neurons are likely to interact
with each other such that they cancel each other out during
gradient ascent, as in XOR logic only one variable should
be TRUE to make the outcome to be TRUE. The large vari-
ance in position 14 and 21 successfully indicates the non-
linear behavior of these two neurons, and their interaction
pattern suggests non-linear XOR logic.

3.2. NIV recovers linear combinatory logic

The inner position variance of NIVs also reveal neurons
that are invariant with different initializations. These neu-
rons are contributing to the output either positively, nega-
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tively or not contributing at all. We define this type of neu-
ron as linear neuron because their contribution can be com-
bined additively. To test for the ability of NIV to discover
linear combinatory logic (AND, OR, NOT) of the network
we created Synthetic Dataset II, which has 4 classes of
sequences, each containing different pre-defined patterns.
Class 1 has both CAGGTC and AGATT, Class 2 has both
AGATT and GCTCAT, Class 3 has CAGGTC or GCTCAT ,
and Class 4 has CGCTTG or CAAGCG. We trained a multi-
task convolutional neural network with the same set-up as
the one used for dataset I except that this network has 4
outputs, and calculate FIM and NIV for each class. The
test AUC is 0.991,0.990,0.944,0.972 for Class 1 to 4 corre-
spondingly, where 20% of the dataset was held out as test
set.

Figure 3. Averaged NIV generated by all 10 runs of gradient as-
cent for each class. Each red circle on the X-axis represents a
neuron with a positive NIV value and a blue circle represents a
neuron with a negative NIV value. Circle size is proportional to
the absolute NIV value. A motif visualization of the sequence
feature that corresponding neuron is capturing is placed above the
circle. The NIV successfully ranks predefined sequence features
as the most important features for each of the classes, while the
difference between AND logic and OR logic is not obvious. The
variance plot on the bottom shows that in the linear case the inner
position variance is small. The filter #28 contains very little in-
formation content, and does not accord with any of the predefined
patterns, even though ranked with high score.

Figure 3 shows the variance of the NIVs of each class. Un-
like NIVs in XOR logic, the gradient ascent result is much
more stable for the linear logic, and thus the variances are
small. We generated an averaged neuron importance vec-
tor from the average of the NIVs for each class. Figure 3
shows the joint visualization of this map of all classes. All
expected patterns in each class are highlighted by strong
positive scores, no matter if AND or OR logic is being em-
ployed by the class. This is reasonable because the network
will prefer to see as many as possible of both patterns to get

a higher output activation.

3.3. Integrating the NIVs to generate overall neuron
importance visualization (ONIV)

As discussed above, for a network containing linear logic
the averaged NIV can be used directly to evaluate the
importance of neurons. However, in the non-linear case,
a neuron importance score might get canceled out if we
take the average of the NIVs. Thus we propose a better
way to integrate the NIVs from different runs to generate
an overall neuron importance vector (ONIV) Φ̂c with the
following steps:
1) Calculate the variance for each position of the NIVs.
2) For positions that have a small variance (possibly linear,
or unimportant), we take the average of all its scores in all
NIVs.
3) For positions with a large variance (possibly non-linear),
we take the maximum of its scores in all NIVs.

By visualizing ONIV together with the variance in each
position, we are able to recover both the importance level
of different features and the presence of non-linear logic.
We created Synthetic Dataset III which contains both lin-
ear and non-linear logic, and tested ONIV’s capability
to highlight all important features as well as to identify
both types of logic. This dataset contains 100,000 syn-
thetic DNA sequences each containing patterns chosen
from CGCTTG, CAGGTC and GCTCAT in random positions.
We label a sequence 1 only when CAGGTC and one of
(GCTCAT,CGCTTG) present, and otherwise 0. This is a
combination of AND logic and XOR logic. We also in-
clude 20,000 sequences that are totally random and label
them as 0. We held out 20% of the dataset and the test
AUC was 0.983.

As shown in Figure 4, neurons capturing CGCTTG,
CAGGTC and GCTCAT are all assigned significantly high
ONIV scores and neurons capturing GCTCAT and CGCTTG
are highlighted with large variance, showing that they are
contributing to the output non-linearly. The NIVs sug-
gest potential non-linear interaction between GCTCAT and
CGCTTG as the corresponding neurons tend to have oppo-
site signs.

3.4. ONIVs permit the activeness of learning to be
evaluated

Interestingly, we observe that there are strong negative
terms in ONIVs for all classes. Neurons with negative
ONIV score are constantly repressed in all runs of gra-
dient ascent. These neurons are associated with ‘NOT’
logic even though we didn’t intentionally add that logic.
An ONIV’s positive and negative terms can be seen as an
indicator of whether a feature is ‘favored’ or ‘unfavored’
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Figure 4. Illustration of the generation of ONIV from NIVs gen-
erated by all 10 runs of gradient ascent on the model from Dataset
III. Each red circle on the X-axis represents a neuron with a pos-
itive NIV value and a blue circle represents a neuron with a neg-
ative NIV value. Circle size is proportional to the absolute NIV
value. Neurons that are potentially involved in non-linear logic
are highlighted with black edge in ONIV.

respectively by the target class. We observed that fea-
tures highlighted by strong negative ONIV values in a tar-
get class are usually patterns ‘favored’ by other non-target
classes, and when the network detects these patterns, it
drastically reduce its confidence in classifying the input
into the target class. This is suggesting that a network could
potentially perform well on a classification task just by us-
ing the process of elimination, without actively learning
patterns from a target class. In another word, a ‘lazy’ net-
work could use a process of elimination. In this situation,
we should adjust the training set by adding more random
negative samples that do not contain any of the patterns in
‘NOT’ logic to increase the activeness of pattern learning
from the positive samples.

3.5. ONIVs discover network’s vulnerability in feature
space

As shown in Figure 3, neuron 28 contains very little in-
formation content (entropy) and does not accord with any
of the patterns we designed, even though it is given a high
ONIV score. This is an example of a feature that is trusted
by the model but not relevant to real world ground truth.
Since the only goal of a deep neural network is to maximize
the objective function and to get better AUC scores on the
validation set, it learns whatever patterns increase its per-
formance. Ground truth irrelevant neurons are potentially
dangerous and could be one reason why gradient ascent in
input space can produce unrecognizable images. (Szegedy
et al., b) showed that when generating adversarial examples
for an input, the minimum necessary perturbations are rel-
atively robust across different subsets of the training data,
indicating that the adversarial noise may not be random.

By looking at the irregular neurons in intermediate layers
using ONIV, we can discover neurons that capture patterns
of adversarial noise, and analyze a network’s vulnerability
more systematically.

4. The correlation of non-negative ONIVs
reveals lower level feature sharing

We use a novel method to discover lower-level feature shar-
ing, even when the class labels are not correlated, using the
overall neuron importance vector proposed in Section 3.3.

The weight sharing mechanism of multi-task neural net-
works allows the reuse of features among classes that share
similar patterns. In past studies, the weight matrix in the
last layer before output is used to examine class similar-
ity. However, this is potentially problematic because the
features in a network’s last layer are already high-level and
thus tend to be class-specific. This method also fails to
discover lower level feature sharing between classes that
are rarely labeled positive together. Moreover, adding spe-
cial sparsity constraints during training is usually needed
to enforce feature sharing in last layer, which could be in-
efficient. As discussed in Section 3.4, the negative ONIV
terms are usually associated with ‘NOT’ logic that helps
the model to obtain improved classification accuracy using
the process of elimination. Only the features highlighted
by positive ONIV scores represent patterns truly exist in
the target class. Thus we use the non-negative ONIV Φ̂c+

to analyze similarity between classes. Below we introduce
a class similarity matrix Φ by taking pair-wise Pearson cor-
relation of non-negative ONIV of all the classes.

ACiCj
=

Cov(Φ̂ci+, Φ̂cj+)

σΦ̂ci+σΦ̂cj+

Φ̂c+ encodes the composition of all favored features for a
given class in intermediate layer. Therefore it describes the
structure of a class with higher resolution than the weight
matrix in the last layer. By taking the difference of ONIV
of a pair of classes, we can also generate a class difference
map by

DCiCj
= Φ̂ci − Φ̂cj .

This map highlights features that are favored by one class
but not favored by the other. This is especially helpful when
studying cell-type specific problems where a key feature
deciding differential expression or binding in different cell
type might be crucial.

Figure 6 shows the class similarity matrix of the Synthetic
Dataset IV with 4 classes of DNA sequences. Class 1
contains GATA and CAGATG, class 2 contains TCAT and
CAGATG, Class3 contains GATA and TCAT, while class 4
only contains CGCTTG. We trained a multi-task CNN with
one convolutional layer that has 32 x 8bp long filters, and
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Figure 5. ONIV for Synthetic Dataset IV class 1 - 4. Each cir-
cle on the X-axis represents a neuron, with red representing pos-
itive ONIV values and blue representing negative values. The
size of the circle is proportional to the absolute value of its ONIV
score. ONIV successfully ranks predefined sequence features as
the most important features for each of the classes.

1 fully connected layers with 64 hidden neurons. The test
AUC is 0.968, 0.967, 0.979, 0.994 for class 1 to 4. The
introduced sequence patterns are deliberately selected such
that 3 pairs of the classes share half of the patterns, while
class 4 is totally different. These four classes are never
labeled as 1 at the same time, thus the labels yield zero
information about their structural similarities. We com-
pared our method to class correlation analysis using only
the last layer weight matrix. The non-negative ONIV corre-
lation matrix successfully assigned higher similarity score
to class 1+2, class 1+3 and class 2+3, while the other meth-
ods failed to do so. Note that method using last layer weight
assigned lowest score to class 2+3, even though they share
the pattern TCAT.

5. DeepResolve produces superior results on
experimental data

We analyzed two experimental biological data sets to com-
pare DeepResolve to other methods.

5.1. Identifying key sequence features in models of TF
binding

We applied DeepResolve to convolutional neural networks
trained on 422 Transcription Factor ChIP-Seq experiments
which have a known motif as ground truth. The inputs
are 200 bp long sequences embedded into 2-D matrices
using one-hot encoding, where the positive set contains
sequences that have peaks of TF binding signal and are
matched with the known motif. The negative set consists
of bi-nucleotide shuffled sequences. We train a single-class
CNN for each experiment using 1 convolutional layer with
128 filters of size 24 with global max-pooling, and 2 fully
connected layers with 32 hidden units. We then gener-

Figure 6. Correlation matrix using non-negative ONIV, ONIV,
non-negative last layer weight and last layer weight. X-axis and
y-axis stands for Class 1 - 4 from left to right, and from top to
bottom. The box on the left-top corner highlights the 3 pairs of
classes that share half of the sequence patterns and thus should
be assigned higher score than the classes located in the L-shape
area in right-bottom corner. The predefined sequence pattern for
each class is stated in Figure 5. Matrix in the left-top corner is
our proposed Class Similarity Matrix, which successfully assign
high correlation to (Class1, Class2), (Class2, Class3) and (Class1,
Class3) and low correlation to all pairs with Class 4 which is
totally different from the other three. The top right corner uses
ONIV without setting negative terms to zero. It fails to propose
feature sharing between Class1 and Class3, Class 2 and Class3.
The bottom two matrices are calculated by taking the Pearson
correlation of the corresponding rows in last layer positive weight
(left) and last layer weight (right). They both fail to assign cor-
rect scores to some combinations of classes that share sequence
features.

ate FIMs and ONIVs for each experiment on the last con-
volutional layer, and rank the filters using ONIV scores.
We convert the top filters into position weight matrices
(PWMs) and match them with known motif for the target
TF using TOMTOM (Gupta et al., 2007), a tool for com-
paring PWM of different motifs, and count how many times
we hit the known motif in top 1, top 3 and top 5 filters with
p-value less than 0.5 and 0.05. We compare our method
to DeepMotif(Lanchantin et al., 2016), a similar visual-
ization tool that generates important sequence features by
conducting gradient ascent directly on the input layer. We
modified DeepMotif’s initialization strategy to allow mul-
tiple random initializations instead of using all 0.25 ma-
trix (naming it enhanced-DeepMotif), and take the most in-
formative 24bp fragment of generated sequences with top
5 class score. We also compare with two gradient-based
method: Grad-CAM and the direct multiplication of gra-
dients and neuron activation. We sample 5000 sequences
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Table 1. Top-1, top-3, top-5 accuracy in identifying matching mo-
tif for TF binding (out of 422 experiments). DR stands for Deep-
Resolve (out method), eDM stands for enhanced-DeepMotif

TOP 1 TOP 3 TOP 5

P-VALUE 0.5 0.05 0.5 0.05 0.5 0.05

DR (OURS) 368 345 416 405 421 419
GRAD-CAM 353 329 407 394 421 417

GRAD*INPUT 350 338 417 412 421 419
EDM 120 42 212 62 249 69

from the positive set, and calculate the Grad-CAM feature
map importance weight for each input by taking the global
average of the gradient flowing back from output to last
convolutional layer. For the second method, we multiply
the gradient by neuron’s activation in the last convolutional
layer for each input, and take the global average. We take
the average of the scores assigned to all the inputs as an
indication of the importance of the neurons.

Shown in Table 1, our method successfully proposes known
matching motifs as top 5 features in 421 out of 422 ex-
periments with p-value less than 0.5, and 419 out of 422
experiments with p-value less than 0.05, which outper-
forms DeepMotif by six times. Our method also outper-
forms Grad-CAM in top-1, top-3, top-5 accuracy and gra-
dient*input in top-1 accuracy, and is compatible to both of
them in the rest of the tasks even though we do not refer to
any input dataset when calculating the ONIVs.

These results demonstrate that convolutional neural net-
works are suitable for predicting genome function because
the resulting convolutional filters can capture motifs accu-
rately.

5.2. Identifying class correlation in the DeepSEA
network

We validate DeepResolve’s class similarity analysis on
DeepSEA (Zhou & Troyanskaya, 2015), a classic multi-
class convolutional network trained on whole genome data
to predict 919 different features including chromatin acces-
sibility, TF binding and histone marks across a variety of
cell types. This network learns abundant information about
the functionality of genomic sequences, and thus could
yield potentially important biological insights. We analyze
the class similarity of each pair of its 919 classes and use
it as a metric to evaluate functional correlation between the
classes. We discover strong positive correlations between
DNase accessibility data and TF/Histone marks known to
be actively regulating DNase hypersensitivity, and strong
negative correlations between DNase accessibility data and

TF/Histone marks known to repress the DNase hypersensi-
tivity.

In DeepSEA, input sequences are 1000bp long, and the
labels are 919 long binary vectors. Each bit of the vec-
tor correspond to one experiment and it is labeled as 1 if
there is peak inside the center 200bp of the input sequence.
The network has 3 convolutional layers with 320, 480, 960
filters, and 1 fully connected layer. We chose the input
layer to the 3rd convolutional layer as H to generate a
feature importance map, where the neurons encodes 480
x 51bp long local sequence features which can be easily
visualized using gradient-based methods with small num-
ber of inputs. We then generate our class similarity matrix
by calculating the Pearson correlation of the non-negative
ONIVs. Given that DeepSEA takes in 1000bp long se-
quences around the biological event, it captures upstream
and downstream sequence context. Therefore our proposed
metric is measuring similarities between the contextual
structures of a pair of regulators, which could suggest in-
teresting correlations in functionality and mechanism. Fig-
ure 7 shows our class similarity matrix and label correla-
tion of DeepSEA. Our matrix revealed strong correlations
between pairs of targets that do not necessarily co-appear
within 200 bp, but are similar in functionality. We then ex-

Figure 7. Class similarity map for DeepSEA. X and Y axis repre-
sents 919 different experiments including DNase I hypersensitiv-
ity, TF binding and Histone marks across different cell types. The
sub-matrix highlighted by the red box is used for DNase correla-
tion pattern analysis in Figure 8.

amined the correlation pattern between selected TF/histone
marks and DNase I hypersensitivity across different cell
types. Figure 8 shows the bi-clustering result on the TF-
histone mark/DNase correlation matrix (the upper part of
the DeepSEA class similarity matrix). We observed clus-
ters of TFs and histone marks sharing similar correlation
patterns, and some of them exhibit cell-type specific effect
on DNase hypersensitivity. We collapsed the map into 1-D
by calculating number of strong positive and negative cor-
relations with DNase experiments for each TF/Chromatin
mark. As shown in Figure 8, we can characterize each TF
and histone mark’s association with chromatin accessibil-
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ity using these indexes. We identify groups of TFs/histone
marks that are positively correlated with DNase hypersen-
sitivity (located in most left of the histogram), and most of
them are known to be chromatin regulators. We also iden-
tify groups of TFs/histone marks that are negatively corre-
late with DNase hypersensitivity and observe that most of
them are well-known transcription repressors.

Figure 8. (A)Bi-clustering of TF/Histone mark - DNase hypersen-
sitivity correlation map (right-top corner of Figure 7), x-axis are
the TF/Histone mark experiments and y-axis are DNase hypersen-
sitivity experiments across 125 different cell types. (B)Bar-plot
of number of strong positive correlation (red) and strong negative
correlation (blue) with DNase experiments for each of the TFs
and Histone marks. Majority of the TF/histone marks in the left
box are known chromatin regulators, and majority of TF/histone
marks in the right box are known transcription repressor.

Another way of utilizing the class similarity matrix is di-
rectly use it as a metric of distance for clustering. We
performed hierarchical clustering of the 919 biological tar-
gets and identified meaningful clusters where targets within
the same cluster are known to be related to each other, in-
cluding groups of the same TF across different cell types,
groups of different TFs in same cell type, and groups of
targets that are known to be co-binder or co-regulating ele-
ments.

We also make use of the feature importance maps to dis-
cover novel sequence features, and explore novel function-
alities of some known motifs. We ranked the 480 sequence
features by its ONIV score in each experiment. For each
sequence feature, we extracted a group of experiments in
which it is ranked as among the top 5 most important fea-
tures, and visualized the experiment matrix. We recog-
nize some motifs that might be relevant to cell-type spe-
cific binding, or mediating the binding of multiple targets.
(Please contact the authors for more analysis on DeepSEA
if interested.)

6. Conclusion
DeepResolve is a gradient ascent based method for visual-
izing and interpreting network’s behavior in feature space
that is reference input free. DeepResolve provides a sum-
mary of a deep neural network’s decision making process,
is capable of extracting both linear and non-linear combi-
natorial logic of a network, reveals key features for a target
class, assesses a network’s activeness in pattern learning,
discovers network’s vulnerability in feature space, and an-
alyzes class similarities at high resolution.
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