
Visualizing Dynamics: from t-SNE to SEMI-MDPs

Nir Ben Zrihem* BENTZINIR@GMAIL.COM
Tom Zahavy* TOMZAHAVY@CAMPUS.TECHNION.AC.IL
Shie Mannor SHIE@EE.TECHNION.AC.IL

Electrical Engineering Department, The Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract
Deep Reinforcement Learning (DRL) is a trend-
ing field of research, showing great promise
in many challenging problems such as playing
Atari, solving Go and controlling robots. While
DRL agents perform well in practice we are
still missing the tools to analayze their perfor-
mance and visualize the temporal abstractions
that they learn. In this paper, we present a novel
method that automatically discovers an internal
Semi Markov Decision Process (SMDP) model
in the Deep Q Network’s (DQN) learned rep-
resentation. We suggest a novel visualization
method that represents the SMDP model by a di-
rected graph and visualize it above a t-SNE map.
We show how can we interpret the agent’s policy
and give evidence for the hierarchical state ag-
gregation that DQNs are learning automatically.
Our algorithm is fully automatic, does not require
any domain specific knowledge and is evaluated
by a novel likelihood based evaluation criteria.

1. Introduction
DQN is an off-policy learning algorithm that uses a Convo-
lutional Neural Network (CNN) (Krizhevsky et al., 2012)
to represent the action-value function and showed supe-
rior performance on a wide range of problems (Mnih et al.,
2015). The success of DQN, and that of Deep Neural Net-
work (DNN) in general, is explained by its ability to learn
good representations of the data automatically. Unfortu-
nately, its high representation power is also making it com-
plex to train and hampers its wide use.

Visualization can play an essential role in understanding
DNNs. Current methods mainly focus on understanding
the spatial structure of the data. For example, Zeiler &
Fergus (2014) search for training examples that cause high

* These authors have contributed equally

neural activation at specific neurons, Erhan et al. (2009)
created training examples that maximizes the neural activ-
ity of a specific neuron and Yosinski et al. (2014) inter-
preted each layer as a group. However, none of these meth-
ods analyzed the temporal structure of the data.

Good temporal representation of the data can speed up
the prerformence of Reinforcement Learning (RL) algo-
rithms (Dietterich, 2000; Dean & Lin, 1995; Parr, 1998;
Hauskrecht et al., 1998), and indeed there is a growing
interest in developing hierarchical DRL algorithms. For
example, Tessler et al. (2016) pre-trained skill networks
using DQNs and developed a Hierarchical DRL Network
(H-DRLN). Their architecture learned to control between
options operating at different temporal scales and demon-
strated superior performance over the vanilla DQN in solv-
ing tasks at Minecraft. Kulkarni et al. (2016) took a dif-
ferent approach, they manually pre-defined sub-goals for
a given task and developed a hierarchical DQN (h-DQN)
that is operating at different time scales. This architecture
managed to learn how to solve both the sub-goals and the
original task and outperformed the Vanilla DQN in the the
challenging ATARI game ’Montezuma’s Revenge’. Both
these methods used prior knowledge about the hierarchy of
a task in order to solve it. However it is still unclear how to
automatically discover the hierarchy in a specific domain
a-priori.

Interpretability of DQN policies is an urging issue that has
many important applications. For example, it may help to
distil a cumbersome model into a simple one (Rusu et al.,
2015) and will increase the human confidence in the per-
formance of DRL agents. By understanding what the agent
has learned we can also decide where to grant it control
and where to take over. Finally, we can improve learning
algorithms by finding their weaknesses.

The internal model principle (Francis & Wonham, 1975)
states that every good solution to a control problem must
be a model of the problem it solves (”Every good key must
be a model of the lock it opens”). This line of thought
has an interesting application to control theory and biology
(Yi et al., 2000). It suggests that to do the best job of reg-

Visualizing Dynamics: from t-SNE to SEMI-MDPs

ulating some system, a control apparatus should include a
model of that system. Sontag (2003) formulated these ideas
mathematically for linear and non linear control systems,
claiming that if a system Σ is solving a control task under
reasonable technical assumptions, then Σ must necessarily
contain a subsystem which is capable of predicting the dy-
namics of the system. In this work we follow the same line
of thought. We claim that DQNs are learning an underly-
ing Semi Markov Decision Process (SMDP) of a problem,
without implicitly being asked.

Zahavy et al. (2016) showed that by using hand-crafted fea-
tures, they can interpret the policies learned by DQN agents
using a manual inspection of a t-Distributed Stochastic
Neighbor Embedding (t-SNE) map (Van der Maaten &
Hinton, 2008). They also revealed that DQNs are automati-
cally learning temporal representations such as hierarchical
state aggregation and temporal abstractions. On the other
hand, they use a manual reasoning of a t-SNE map, a te-
dious process that requires careful inspection as well as an
experienced eye.

However, we suggest a method that is fully automatic. In-
stead of manually designing features, we use clustering al-
gorithms to reveal the underlying structure of the t-SNE
map. But instead of naively applying classical methods,
we designed novel time-aware clustering algorithms that
take into account the temporal structure of the data. Us-
ing this approach we are able to automatically reveal the
underlying dynamics and rediscover the temporal abstrac-
tions showed in (Zahavy et al., 2016). Moreover, we show
that our method reveals an underlying SMDP model and
confront this hypothesis qualitatively, by designing a novel
visualization tool, and quantitatively, by developing likeli-
hood criteria which we later test empirically.

The result is an SMDP model that gives a simple expla-
nation on how the agent solves the task - by decomposing
it automatically into a set of sub-problems and learning a
specific skill at each. Thus, we claim that we have found
an internal model in DQN’s representation, which can be
used for automatic sub-goal detection in future work.

2. Background
We briefly review the standard reinforcement learning
framework of discrete-time, finite Markov decision pro-
cesses (MDPs). In this framework, the goal of an RL
agent is to maximize its expected return by learning a pol-
icy π : S → ∆A which is a mapping from states s ∈ S
to a probability distribution over some action space A. At
time t the agent observes a state st ∈ S, selects an action
at ∈ A, and receives a reward rt. Following the agents
action choice, it transitions to the next state st+1 ∈ S.
We consider infinite horizon problems where the cumula-

tive return at time t is given by Rt =
∑∞
t′=t γ

t′−trt, and
γ ∈ [0, 1] is the discount factor. The action-value function
Qπ(s, a) = E[Rt|st = s, at = a, π] represents the ex-
pected return after observing state s, taking action a after
which following policy π. The optimal action-value func-
tion obeys a fundamental recursion known as the optimal
Bellman equation,

Q∗(st, at) = E
[
rt + γmax

a′
Q∗(st+1, a

′)
]

Deep Q Networks: The DQN algorithm (Mnih et al.,
2015) approximates the optimal Q function using a CNN,
by optimizing the network weights such that the expected
TD error of the optimal Bellman equation is minimized:

Est,at,rt,st+1
‖Qθ (st, at)− yt‖22 (1)

where

yt =

rt if st+1 is terminal

rt + γmax
a’
Qθtarget

(
st+1, a

′
)

otherwise .

Notice that this is an offline learning algorithm, meaning
that the tuples {st,at, rt, st+1, γ} are collected from the
agents experience and are stored in the Experience Re-
play (ER) (Lin, 1993). The ER is a buffer that stores the
agents experiences at each time-step t, for the purpose of
ultimately training the DQN parameters to minimize the
loss function. When we apply mini-batch training updates,
we sample tuples of experience at random from the pool of
stored samples in the ER. The DQN maintains two sepa-
rate Q-networks. The current Q-network with parameters
θ, and the target Q-network with parameters θtarget. The
parameters θtarget are set to θ every fixed number of iter-
ations. In order to capture the game dynamics, the DQN
represents the state by a sequence of image frames.

Skills, Options, Macro-actions (Sutton et al., 1999), are
temporally extended control structure, denoted by σ. A
skill is defined by a triple σ =< I, π, β > where I is
the set of states where the skill can be initiated, π is the
intra-skill policy, which determines how the skill behaves
when encountering states, and β is the set of termination
probabilities determining when a skill will stop executing.
β is typically either a function of state s or time t. Any
MDP with a fixed set of skills is a Semi-Markov Decision
Process (SMDP). Planning with skills can be performed
by predicting for each state in the skill initiation set I , the
state in which the skill will terminate and the total reward
received along the way. More formally, an SMDP can be
defined by a five-tuple < S,Σ, P,R, γ > where S is a set

Visualizing Dynamics: from t-SNE to SEMI-MDPs

of states, Σ is a set of skills, and P is the transition proba-
bility kernel.

Rσs = E[rσs] = E[rt+1 +γrt+2 + · · ·+γk−1rt+k|st = s, σ]
(2)

represents the expected discounted sum of rewards received
during the execution of a skill σ initialized from a state
s, and γ ∈ [0, 1] is the discount factor. The Skill Pol-
icy µ : S → ∆Σ is a mapping from states to a proba-
bility distribution over skills Σ. The action-value function
Q : S × Σ → R represents the long-term value of tak-
ing a skill σ ∈ Σ from a state s ∈ S and thereafter al-
ways selecting skills according to policy µ and is defined
by Q(s, σ) = E[

∑∞
t=0 γ

tRt|(s, σ), µ]. We denote the skill
transition probability as

Pσs,s′ =

∞∑
j=0

γjPr[k = j, st+j = s′|st = s, σ]

Under these definitions the optimal skill value function is
given by the following equation (Stolle & Precup) as:

Q∗Σ(s, σ) = E[Rσs + γkmax
σ′∈Σ

Q∗Σ(s′, σ′)] . (3)

3. Methodology
For each domain:

1. Learn : Train a DQN agent.

2. Evaluate : Run the agent, record visited states, neural
activations and Q-values.

3. Reduce : Apply t-SNE on the neural activation to ob-
tain a low dimensional representation.

4. Cluster : Apply clustering on the data.

5. Model : Fit an SMDP model. Estimate the transition
probabilities and reward values.

6. Visualize : Visualize the SMDP on top of the t-SNE
map.

The rest of the paper is organized as follows: Section 4 ex-
plains how we create the t-SNE maps from raw pixel states
using the DQN algorithm. In section 5 we present the clus-
tering methods that we developed and the quantitative eval-
uation criteria. Section 6 explains our visualization method
and Section 7 presents examples for Atari2600 games using
our method. Finally Section 8 summarizes our work.

4. From DQN to t-SNE
We train DQN agents using the Vanilla DQN algorithm
(Mnih et al., 2015). When training is done, we evaluate

the agent at multiple episodes, using an ε-greedy policy.
We record all visited states and their neural activations, as
well as the Q-values and other manually extracted features.
We keep the states in their original visitation order in order
to maintain temporal relations. Since the neural activations
are of high order we apply t-SNE dimensionality reduction
so we are able to visualize it.
t-SNE is a visualization technique for high dimensional
data that assigns each data point a location in a two or three-
dimensional map. It has been proven to outperform lin-
ear dimensionality reduction methods and non-linear em-
bedding methods such as ISOMAP (Tenenbaum et al.,
2000) in several research fields including machine-learning
benchmark datasets and hyper-spectral remote sensing data
(Lunga et al., 2014). At its core, The t-SNE algorithm de-
fines two similarity measures from the euclidean distances
between points. The first measure: pi,j is defined over pairs
of points xi, xj in the high dimension space using a Gaus-
sian distribution:

pj|i =
exp(−‖xi − xj‖2/2σ2

i)∑
k 6=i exp(−‖xi − xk‖

2
/2σ2

i)

pi,j =
pi|j + pj|i

2

(4)

The second measure qi,j is defined over pairs of points
yi, yj in the desired low-dimension space using a Student-t
distribution:

qi,j =
(1 + ‖yi − yj‖2)−1∑
k 6=i (1 + ‖yi − yj‖2)−1

(5)

The algorithm defines a cost function between the mea-
sures:

Cost = KL(P ||Q) =
∑
i,j

pi,j log
pi,j
qi,j

(6)

And minimize it by following a gradient descent approach:

δCost

δyi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1

Y t ← Y t−1 + η
δCost

δY
+ α(t)(Y t−1 − Y t−2)

(7)

The technique is relatively easy to optimize, and reduces
the tendency to crowd points together in the center of the
map by using the heavy tailed Student-t distribution (Equa-
tion 5) in the low dimensional space. It is known to be par-
ticularly good at creating a single map that reveals structure
at many different scales, which is particularly important for
high-dimensional data that lie on several different, but re-
lated, low-dimensional manifolds. Therefore we can vi-
sualize the different sub-manifolds learned by the network
and interpret their meaning.

Visualizing Dynamics: from t-SNE to SEMI-MDPs

5. From t-SNE to SMDP
In this section we explain the clustering methods which we
developed for this work and show how to create an SMDP
model. We define an SMDP model over the set of t-SNE
points using a vector of cluster labels C, and a transition
probability matrix P where Pi,j indicates the empirical
probability of moving from cluster i to j. We define the
entropy of a model by: e = −

∑
i{|Ci| ·

∑
j Pi,j logPi,j},

i.e., the average entropy over transition probability from
each cluster weighted by its size.

We note that threw this entire paper, by an SMDP model
we only refer to the induced Markov Reward Process of
the DQN policy. Recall that the DQN agent is learning
a deterministic policy, therefore, in deterministic environ-
ments (e.g., the Atari2600 emulator), the underlying SMDP
should in fact be deterministic and an entropy minimizer.

The data that we collect from the DQN agent is highly cor-
related since it was generated from an MDP. However, stan-
dard clustering algorithms assume the data is drawn from
an i.i.d distribution, and therefore result with clusters that
overlook the temporal information. This results with high-
entropy SMDP models that are too complicated to analayze
and are not consistent with the data. For this aim, we pro-
pose 3 clustering methods that incorporate the data tempo-
ral information. We present two variants of K-means and a
variant of hierarchical clustering.

5.1. K-means based methods

K-means (MacQueen et al., 1967) is a method commonly
used to automatically partition a data set into k groups.
Given a set of observations (x1, x2, · · · , xn), where each
observation is a d-dimensional real vector, K-means clus-
tering aims to partition the n observations into k(≤ n) sets
C = (C1, C2, · · · , Ck) so as to minimize the within-cluster
sum of squares:

arg min
C

k∑
i=1

∑
x∈Ci

‖x− µi‖
2 (8)

where µi is the mean of points in Ci. It proceeds by se-
lecting k initial cluster centers and then iteratively refining
them as follows:

1. Assignment step, each observation xi is assigned to
its closest cluster center:

C
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤
∥∥xp − µ(t)

j

∥∥2

∀j, 1 ≤ j ≤ k
}
.

(9)

2. Update step, each cluster center µj is updated to be

the mean of its constituent instances:

µ
(t+1)
i =

1

|C(t)
i |

∑
xj∈C(t)

i

xj .

The algorithm converges when there is no further change
in the assignment of instances to clusters.

Spatio-Temporal Cluster Assignment.
Our first K-means variant modifies the assignment step in
the vanilla K-means algorithm to include temporal infor-
mation. Here, each observation xp is a t-SNE point with
time index p along the trajectory. The K-means algorithm,
presented with the coordinates of the points, takes care of
clustering points with spatial proximity. In order to encour-
age temporal coherency, we modify the assignment step in
the following way:

C
(t)
i =

{
xp :

∥∥Xp−w:p+w − µ(t)
i

∥∥2 ≤
∥∥Xp−w:p+w − µ(t)

j

∥∥2
,

∀j, 1 ≤ j ≤ k
}

(10)

Where Xp−w:p+w is the set of 2w t-SNE points before and
after xp along the trajectory. In this way, a point xp is as-
signed to a cluster µj , if its neighbours along the trajectory
are also close to µj .

Entropy Regularization Cluster Assignment.
In order to create simpler models, we suggest to add an en-
tropy regularization term for the K-mean assignment step:

C
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2
+ d · et−1

xp→i ≤∥∥xp − µ(t)
j

∥∥2
+ d · et−1

xp→j ,

∀j, 1 ≤ j ≤ k
}
.

(11)

Where d is the penalty weight, and et−1
xp→i indicates the en-

tropy gain of changing xp assignment to cluster i in the
SMDP obtained at iteration t − 1. This is equivalent to
minimizing an energy function which is the sum of the K-
means objective function (Equation 8) and an entropy term.

5.2. Agglomerative clustering approach

Our third method for creating an SMDP model is a vari-
ant of hierarchical clustering. Agglomerative clustering is
a bottom-up hierarchical approach. It begin when each ob-
servation forms a unique cluster. Then, pairs of clusters
are merged together so as to minimize some linkage cri-
teria. Most popular here are the single-linkage criteria:
c(A,B) = min

a,b
{|xa − xb‖ : a ∈ A, b ∈ B}, and the

complete-linkage criteria: c(A,B) = max
a,b
{|xa − xb‖ :

a ∈ A, b ∈ B}. In order to encourage temporal coherency
in cluster assignments we form a new linkage criteria based

Visualizing Dynamics: from t-SNE to SEMI-MDPs

on ward’s (Ward, 1963) criteria:

c(A,B) = (1−λ) ·mean{‖xa − xb‖ : a ∈ A, b ∈ B}+
λ · e{A,B}→AB

(12)

where e{A,B}→AB measures the difference between the en-
tropy of the corresponding SMDP before and after merging
clusters A,B.

5.3. Evaluation criteria

We follow the analysis of (Hallak et al., 2013) and define
criteria to measure the fitness of a model empirically. We
define the Value Mean Square Error(VMSE) as the nor-
malized distance between two value estimations:

VMSE =
‖vDQN − vSMDP ‖

‖vDQN‖
.

The SMDP value is given by

VSMDP = (I + γkP)−1r (13)

and the DQN value is evaluated by averaging the DQN
value estimates over all MDP states in a given cluster
(SMDP state): vDQN (cj) = 1

|Cj |
∑
i:si∈cj v

DQN (si) . Fi-
nally, the greedy policy with respect to the SMDP value is
given by:

πgreedy(ci) = argmax
j
{Rσi,j + γkσi,j vSMDP (cj)} (14)

The Minimum Description Length (MDL; (Rissanen,
1978)) principle is a formalization of the celebrated Oc-
cams Razor. It copes with the over-fitting problem for the
purpose of model selection. According to this principle, the
best hypothesis for a given data set is the one that leads to
the best compression of the data. Here, the goal is to find
a model that explains the data well, but is also simple in
terms of the number of parameters. In our work we follow
a similar logic and look for a model that best fits the data
but is still simple.
Instead of considering ”simple” in terms of the number
of parameters, we measure the simplicity of the spatio-
temporal state aggregation. For spatial simplicity we define
the Inertia: I =

∑n
i=0 minµj∈C(||xj − µi||2) which mea-

sures the variance of MDP states inside a cluster (AMDP
state). For temporal simplicity we define the entropy:
e = −

∑
i{|Ci| ·

∑
j Pi,j logPi,j} , and the Intensity Fac-

tor which measures the fraction of in/out cluster transitions:
F =

∑
j

Pjj∑
i Pji

.

6. Visualization: fusing SMDP with t-SNE
In Section 4 we explained how to create a t-SNE map from
DQN’s neural activations and in Section 5 we showed how

to automatically design an SMDP model using temporal-
ware clustering methods. In this section we explain how to
fuse the SMDP model with the t-SNE map for a clear visu-
alization of the dynamics.
In our approach, an SMDP is represented by a directed
graph. Each SMDP state is represented by a node in the
graph and corresponds to a cluster of t-SNE points (game
states). In addition, the transition probabilities between the
SMDP states are represented by weighted edges between
the graph nodes. We draw the graph on top of the t-SNE
map such that it reveals the underlying dynamics. Choos-
ing a good layout mechanism to represent a graph is a hard
task when dealing with high dimensional data (Tang et al.,
2016). We consider different layout algorithms for the po-
sition of the nodes, such as the spring layout that position
nodes by using the Fruchterman-Reingold force-directed
algorithm and the spectral layout that uses the eigenvectors
of the graph Laplacian (Hagberg et al., 2008). However, we
found out that simply positioning each node at the average
coordinates of each t-SNE cluster gives a more clear visual-
ization. The intuition behind it is that the t-SNE algorithm
was planned to solve the crowding problem and therefore
outputs clusters that are well separated from each other.
Finally, each node in the graph is represented by its cen-
troid. For example, if each state is an image, then a node
is represented using the mean or median images. Another
approach is to represent a node using its most significant
features. In this approach each node is annotated with a
few features that are considered most distinct, e.g., by the
feature with lowest variance in the cluster.

7. Experiments
Experimental set-up. We evaluated our method on two
Atari2600 games, Breakout and Pacman. For each game
we collected 120k game states. We apply the t-SNE al-
gorithm directly on the collected neural activations of the
last hidden layer, similar to Mnih et al. (2015). The in-
put X ∈ R120k×512 consists of 120k game states with 512
features each (the size of our DQN last layer). Since this
data is relatively large, we pre-processed it using Princi-
pal Component Analysis to dimensionality of 50 and used
the Barnes Hut t-SNE approximation (Van Der Maaten,
2014). All experiments were performed with 3000 itera-
tions perplexity of 30. The input X ∈ R120k×3 to the
clustering algorithm consists of 120k game states with 3
features each (two t-SNE coordinates and the Value esti-
mate). We applied the Spatio-Temporal Cluster Assign-
ment with k=20 clusters and w=2 temporal window size
(Equation 10). We run the algorithm for 160 iterations and
choose the best SMDP in terms of minimum entropy (we
will consider other measures in future work). Finally we vi-
sualize the SMDP using the visualization method explained
in Section 6.

Visualizing Dynamics: from t-SNE to SEMI-MDPs

Figure 1. SMDP visualization for Breakout.

Simplicity. Looking at the resulted SMDPs it is interesting
to note that the transition probability matrix is very sparse,
i.e., the transition probability from each state is not zero
only for a small subset of the states, thus, indicating that our
cluster are located in time. Inspecting the mean image of
each cluster we can see that the clusters are also highly spa-
tially located, meaning that the states in each cluster share
similar game position.

Figure 1 shows the SMDP for Breakout. The mean image
of each cluster shows us the ball location and direction (in
red), thus characterizes the game situation in each cluster.
We also observe that states with low entropy follow a well
defined skill policy. For example cluster 10 has one main
transition ans show a well defined skill of carving the left
tunnel (see the mean image). In contrast, clusters 6 and
16 has transitions to more clusters (and therefore higher
entropy) and a much less defined skill policy (presented by
its relatively confusing mean state).

Figure 2 shows the SMDP for Pacman. The mean image
of each cluster shows us the agent’s location (in blue), thus
characterizes the game situation in each cluster. We can
see that the agent is spending its time in a very defined
areas in the state space at each cluster. For example, cluster
19 it is located in the north-west part of the screen and in
cluster 9 it is located in south-east. We also observe that
clusters with more transitions, e.g., clusters 0 and 2, suffer
from less defined mean state.

0 5 10 15 20 25
Cluster index

2

0

2

4

V
a
lu

e

DQN value vs. SAMDP value

DQN

SAMDP

0 5 10 15 20 25
Cluster index

1

0

1

C
o
rr

e
la

ti
o
n

Correlation between greedy policy and trajectory reward

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage of extermum trajectories used

0.2

0.3

0.4

0.5

W
e
ig

h
t

Greedy policy weight in good/bad trajectories

High reward trajs

Low reward trajs

Figure 3. Model Evaluation. Top: Value function consistency.
Center: greedy policy correlation with trajectory reward. Bot-
tom: top (blue), least (red) rewarded trajectories.

Model Evaluation. We evaluate our model using three dif-
ferent methods. First, the VMSE criteria (Figure 3, top):
high correlation between the DQN values and the SMDP
values gives a clear indication to the fitness of the model to
the data. Second, we evaluate the correlation between the
transitions induced by the policy improvement step and the
trajectory reward Rj . To do so, we measure P ji : the em-
pirical distribution of choosing the greedy policy at state ci
in that trajectory. Finally we present the correlation coeffi-
cients at each state: corri = corr(P ji , R

j) (Figure 3, cen-
ter). Positive correlation indicates that following the greedy
policy leads to high reward. Indeed for most of the states
we observe positive correlation, supporting the consistency

Visualizing Dynamics: from t-SNE to SEMI-MDPs

Figure 2. SMDP visualization for Pacman.

of the model. The third evaluation is close in spirit to the
second one. We create two transition matrices T+, T− us-
ing k top-rewarded trajectories and k least-rewarded tra-
jectories respectively. We measure the correlation of the
greedy policy TG with each of the transition matrices for
different values of k (Figure 3 bottom). As clearly seen, the
correlation of the greedy policy and the top trajectories is
higher than the correlation with the bad trajectories.

8. Discussion
In this work we considered the problem of visualizing dy-
namics. Starting with a t-SNE map of the neural activa-
tions of a DQN and ending up with an SMDP model de-
scribing the underlying dynamics. We developed cluster-
ing algorithms that take into account the temporal aspects
of the data and defined quantitative criteria to rank candi-
date SMDP models based on the likelihood of the data and
an entropy simplicity term. Finally we showed in the exper-
iments section that our method can successfully be applied
on two Atari2600 benchmarks, resulting in a clear interpre-
tation for the agent policy.
Our method is fully automatic and does nor require any
manual or game specific work. We note that this is a work
in progress, it is mainly missing the quantitative results for
the different likelihood criteria. In future work we will fin-
ish to implement the different criteria followed by the rele-
vant simulations.

References
Dean, Thomas and Lin, Shieu-Hong. Decomposition tech-

niques for planning in stochastic domains. 1995.

Dietterich, Thomas G. Hierarchical reinforcement learning
with the MAXQ value function decomposition. J. Artif.
Intell. Res.(JAIR), 13:227–303, 2000.

Duda, Richard O, Hart, Peter E, and Stork, David G. Pat-
tern classification. John Wiley & Sons, 2012.

Erhan, Dumitru, Bengio, Yoshua, Courville, Aaron, and
Vincent, Pascal. Visualizing higher-layer features of a
deep network. Dept. IRO, Université de Montréal, Tech.
Rep, 4323, 2009.

Francis, Bruce A and Wonham, William M. The internal
model principle for linear multivariable regulators. Ap-
plied mathematics and optimization, 2(2), 1975.

Hagberg, Aric A., Schult, Daniel A., and Swart, Pieter J.
Exploring network structure, dynamics, and function us-
ing NetworkX. In Proceedings of the 7th Python in Sci-
ence Conference (SciPy2008), August 2008.

Hallak, Assaf, Di-Castro, Dotan, and Mannor, Shie. Model
selection in markovian processes. In Proceedings of the
19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, 2013.

Visualizing Dynamics: from t-SNE to SEMI-MDPs

Hauskrecht, Milos, Meuleau, Nicolas, Kaelbling,
Leslie Pack, Dean, Thomas, and Boutilier, Craig.
Hierarchical solution of Markov decision processes
using macro-actions. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence, pp.
220–229. Morgan Kaufmann Publishers Inc., 1998.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

Kulkarni, Tejas D, Narasimhan, Karthik R, Saeedi, Arda-
van, and Tenenbaum, Joshua B. Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and
intrinsic motivation. arXiv preprint arXiv:1604.06057,
2016.

Lin, Long-Ji. Reinforcement learning for robots using neu-
ral networks. Technical report, DTIC Document, 1993.

Lunga, Dalton, Prasad, Santasriya, Crawford, Melba M,
and Ersoy, Ozan. Manifold-learning-based feature ex-
traction for classification of hyperspectral data: a review
of advances in manifold learning. Signal Processing
Magazine, IEEE, 31(1):55–66, 2014.

MacQueen, James et al. Some methods for classification
and analysis of multivariate observations. 1967.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540), 2015.

Parr, Ronald. Flexible decomposition algorithms for
weakly coupled Markov decision problems. In Proceed-
ings of the Fourteenth conference on Uncertainty in arti-
ficial intelligence, pp. 422–430. Morgan Kaufmann Pub-
lishers Inc., 1998.

Rissanen, Jorma. Modeling by shortest data description.
Automatica, 14(5):465–471, 1978.

Rusu, Andrei A, Colmenarejo, Sergio Gomez, Gulcehre,
Caglar, Desjardins, Guillaume, Kirkpatrick, James, Pas-
canu, Razvan, Mnih, Volodymyr, Kavukcuoglu, Koray,
and Hadsell, Raia. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Sontag, Eduardo D. Adaptation and regulation with sig-
nal detection implies internal model. Systems & control
letters, 50(2):119–126, 2003.

Stolle, Martin and Precup, Doina. Learning options in re-
inforcement learning. Springer.

Sutton, Richard S, Precup, Doina, and Singh, Satinder. Be-
tween MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning. Artificial Intel-
ligence, 112(1), August 1999.

Tang, Jian, Liu, Jingzhou, Zhang, Ming, and Mei, Qiaozhu.
Visualizing large-scale and high-dimensional data. In
Proceedings of the 25th International Conference on
World Wide Web. International World Wide Web Con-
ferences Steering Committee, 2016.

Tenenbaum, Joshua B, De Silva, Vin, and Langford,
John C. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500), 2000.

Tessler, Chen, Givony, Shahar, Zahavy, Tom, Mankowitz,
Daniel J, and Mannor, Shie. A deep hierarchical ap-
proach to lifelong learning in minecraft. arXiv preprint
arXiv:1604.07255, 2016.

Van Der Maaten, Laurens. Accelerating t-SNE using tree-
based algorithms. The Journal of Machine Learning Re-
search, 15(1):3221–3245, 2014.

Van der Maaten, Laurens and Hinton, Geoffrey. Visual-
izing data using t-SNE. Journal of Machine Learning
Research, 9(2579-2605):85, 2008.

Ward, Joe H. Hierarchical grouping to optimize an objec-
tive function. Journal of the American Statistical Asso-
ciation, 58(301):236–244, 1963.

Yi, Tau-Mu, Huang, Yun, Simon, Melvin I, and Doyle,
John. Robust perfect adaptation in bacterial chemotaxis
through integral feedback control. Proceedings of the
National Academy of Sciences, 97(9):4649–4653, 2000.

Yosinski, Jason, Clune, Jeff, Bengio, Yoshua, and Lipson,
Hod. How transferable are features in deep neural net-
works? In Advances in Neural Information Processing
Systems, pp. 3320–3328, 2014.

Zahavy, Tom, Zrihem, Nir Ben, and Mannor, Shie. Gray-
ing the black box: Understanding dqns. arXiv preprint
arXiv:1602.02658, 2016.

Zeiler, Matthew D and Fergus, Rob. Visualizing and under-
standing convolutional networks. In Computer Vision–
ECCV 2014, pp. 818–833. Springer, 2014.

