
Visual Tools for Debugging Neural Language Models

Xin Rong RONXIN@UMICH.EDU

School of Information, University of Michigan, 105 S State St., Ann Arbor, MI 48109 USA

Eytan Adar EADAR@UMICH.EDU

School of Information, University of Michigan, 105 S State St., Ann Arbor, MI 48109 USA

Abstract
While neural language models are powerful, they
need just the right configuration of hyperparam-
eters and a large amount of training data to per-
form well. When a model under development or
training fails to give expected output, it is diffi-
cult for the user to debug, as the model is often a
black box to the user. In this work, we discuss a
set of visual tools designed to support the debug-
ging process of neural language models. These
are implemented in our LAnguage Model Visual
Inspector (LAMVI) system, an interactive visual
environment for exploring and debugging word
embedding models.

1. Introduction
Natural language models based on word embeddings or
more complex models (e.g., LSTMs, CNNs) are ex-
tremely powerful for representing text. Such models have
been trained to generate impressive results ranging from
learning linguistic regularities (semantic and syntactic) to
higher level tasks such as text generation and summariza-
tion (Mikolov et al., 2013; Pennington et al., 2014; Karpa-
thy et al., 2015). With increasing popularity, and new ef-
forts to publish models (e.g., Gitxiv and many open-source
tools), there are a variety of off-the-shelf implementations
to choose from. While in some cases the pre-trained mod-
els are sufficient (and highly performant on the provided
application/test scenario), developers must often modify
the models in some way to work with the specific appli-
cation, such as embedding users and products in the space
for the purpose of building recommender systems. Tun-
ing these models may require the developer to provide
new data, change model parameters, or more significantly
change the architecture.

International Conference on Machine Learning (ICML) Workshop
on Visualization for Deep Learning, New York, NY, USA, 2016.
Copyright 2016 by the author(s).

It is often this exercise of modifying existing solutions that
creates frustrating challenges to developers. Models can
be highly sensitive to numerous factors ranging from pre-
processing, to training, to the model configuration itself.
These are often non-intuitive to the developer and results
in an unguided experimentation with what look like “black-
box” models. Often, it is not clear if the progress made in
tuning the models is leading to the desired, let alone opti-
mal, outcome. We have experienced these challenges our-
selves in a number of applications. While we have devel-
oped some “institutional memory” on what works (Rong
et al., 2016), this does not have broad coverage or is easy
to apply directly.

Our belief is that model tuning and debugging can better be
addressed through noval tools. To that end, we have been
developing LAMVI (LAnguage Model Visual Inspector),
a visualization-driven tool for debugging neural language
models. We have specifically opted for a visual interface
because of the complexity of the inputs, outputs, and inter-
mediate states of the model. We have found it extremely
difficult to debug our models without “summaries” of the
data. Visualizations, as cognitive boosts, provide access to
the “black-box” without requiring complete transparency.
Rather, those aspects of the data/model that are useful in
making decisions are provided through visual channels.

In our current instantiation of LAMVI we have focused on
a common scenario—where the expected output is largely
clear to the developer. For example, given a particular
query (e.g., input term), the developer would be able to
“grade” the output. Visually providing access to this out-
put, in a way that supports this grading, is a key design
requirement we are targeting. Additionally, we would like
for the end-user to be able to trace failures of the model in
a way that supports tuning decisions. Ideally, the end-user
should be able to generate reasonable hypotheses that more
training data, different pre-processing, or a different tun-
ing parameter, or even a different architecture, might help.
They should then be able to easily test this modification.
LAMVI supports this through an interactive, visual front-

Visual Tools for Debugging Neural Language Models

Figure 1. Screenshot of LAMVI. Panel A shows model and corpus overview; Panel B supports the inspection of activation levels of
hidden-layer units, vector interactions, and influential training instances (not shown here; see Figure 4); Panel C allows the user to enter
queries and select words to watch; Panel C also visualizes the change of ranks of the watched words over iterations; Panel D shows the
interactions between two vectors, as well as the most influential words contributing to their association.

end.

Though our long term goal is to support many different
kinds of model failures, we have particularly focused on
two in our initial implementation: (1) insufficient signal
in the input corpus, and (2) the training process was not
properly configured. LAMVI allows the developer to see
the input corpus, configure the model, and iteratively ex-
ecute the training. During this training, the developer can
inspect the hidden layers of the model, observe how they
change, and “probe” them for specific query terms. More
critically, the system allows for inspection of pairs of words
(e.g., query and result), their joint hidden layers, features,
and actual training instances (examples pulled from the in-
put corpus). Various visualizations (e.g., heatmaps, and 2D
projections) allow the developer to better “understand” the
underlying model. Additionally, LAMVI allows a devel-
oper to see if model training is progressing in a desired
direction. Given an input query (or queries), the developer
can track the “similarity” to a set of words through a visual
ranking which displays trend information.

This paper describes our current work-in-progress imple-
mentation. The tool, which runs in a browser, is cur-
rently configured for word2vec, a popular word embedding

model (Mikolov et al., 2013). However, we have archi-
tected it to work with other models such as GloVe (Pen-
nington et al., 2014), DeepWalk (Perozzi et al., 2014), or
LINE (Tang et al., 2015). We describe our current imple-
mentation and the design decisions we have made that we
believe are useful beyond our current system. Our goal is
to provide a user-friendly tool for allowing developers to
determine if their system is working, and if not, to support
changes that lead to effective solutions.

2. Related Work
There is a large amount of work on use of visualization
to inspect text, some with a machine learning focus. For
example, AntConc provides concordances and other visual
toolkits to support corpus linguistic analysis, such as word
frequencies and collocation inspection (Anthony, 2011).
Chuang et al. use association matrices and alignment charts
to investigate latent topic coverage of a large collection of
model variants (Chuang et al., 2012; 2013). LDAvis em-
ploys interactive visualizations to facilitate the user to in-
terpret the content and inter-relationships of different la-
tent topics learned by a topic model (Sievert & Shirley,
2014). Other examples related to topic visualization in-

Visual Tools for Debugging Neural Language Models

clude (Liu et al., 2009; Cui et al., 2014). Kulesza et al. use
simple bar graphs of feature importance to provide answers
to the user’s why-questions regarding text message classifi-
cation in an email client application (Kulesza et al., 2011).
The visual tools presented in these studies greatly improve
the interpretability of their corresponding language models,
and many of the techniques, such as concordances, are bor-
rowed in our LAMVI implementation. LAMVI, however,
is particularlly focused on the training process of neural
network models.

Using visualization techniques to improve understandabil-
ity of neural network (NN) models has also drawn a great
deal of attention. Many NN visualization projects are fo-
cused on computer vision (Yosinski et al., 2015; Samek
et al., 2015). There are also several interactive visualiza-
tion projects developed for educational purposes, such as
the recent Tensorflow Playground.1

Compared to images, videos, or quantitative multidimen-
sional datasets, words and sentences lack natural visual
representation and can be harder to interpret. The re-
quired transformation of text to data that can be visually
encoded presents unique challenges. To improve under-
standability of natural language representations learned by
neural network models, existing techniques for visualizing
high-dimensional data are often borrowed, such as prin-
cipal component analysis (PCA) (Jolliffe, 2002), multi-
dimensional scaling (Kruskal, 1964), or t-SNE (Van der
Maaten & Hinton, 2008). However, these methods are not
neural-network-specific, and do not specifically improve
the understandability of the learning process of neural net-
works. In comparison, a recent work by Karpathy et al. em-
ploy multiple views of activation levels to illustrate how re-
current neural networks capture patterns in text sequences,
such as long-range dependencies (Karpathy et al., 2015).
We have previously released Word Embedding Visual In-
spector (WEVI) (Rong, 2014),2 an interactive educational
tool that lets the user play with a toy word2vec model in
the browser. In comparison, the presented LAMVI system
is not just a tool that supports understanding the underlying
neural network model, but provides an interactive debug-
ging environment for model development and deployment
as well.

3. Skip-gram Model with Negative Sampling
Before introducing LAMVI, we provide a brief review of
the word2vec skip-gram model (Mikolov et al., 2013), the
underlying neural language model that LAMVI currently
supports. The model can be efficiently trained on large lin-
guistic corpora to generate continuous vector representa-

1http://playground.tensorflow.org/
2http://bit.ly/wevi-online

tions of words. The learned vectors (i.e., word embeddings)
can then be used directly for text classification and cluster-
ing, or initializing the input layers of deep neural network
models. This particular model has been shown to be per-
formant when trained on a variety of corpora (Levy et al.,
2015; Lai et al., 2015).

The word2vec model is a log-bilinear model, a neural net-
work model with one hidden layer that has linear activation.
The output layer of the network is a softmax layer. Given a
word wI and a set of words in its neighborhood (i.e., skip-
gram), wO1 , wO2 , · · · , wOC

, the model predicts the prob-
ability of generating the words in the skip-gram given wI .
The probability is formulated as:

p(wO1
, wO2

, · · · , wOC
|wI) =

C∏
c=1

exp(vT
wI

v′wj
)∑|V |

j′=1 exp(v
T
wI

v′wj′
)

(1)
where C is the size of the context; vw is the vector of w
taken from the weight matrix between the input and the
hidden layers; v′w is the vector of w taken from the weights
between the hidden and the output layers; and |V | is the
size of the vocabulary.

The training of the model is done using backpropagation
with stochastic gradient descent. The original form of
the model requires updating every single element on the
hidden→output weight matrix for each training instance,
which makes training very inefficient. Mikolov et al. 2013
propose negative sampling, which randomly samples a few
words from an empirical distribution per training instance,
and only update the hidden→output weights associated
with these words. The learning objective then becomes:

E = − log σ(v′wO

T
vI)−

∑
wj∈Wneg

log σ(−v′wj

T
vI) (2)

where Wneg is the set of words that are taken as negative
samples.

Other optimization methods have also been shown to be
very important (Levy et al., 2015). These include: down-
sampling frequent words; random shrinking of window size
(implicitly taking care of contextual word proximity); the
initialization of the word vectors, the learning rate, and the
decay of learning rates are important as well, as we shall
visually explore in the remainder of this paper.

4. LAMVI In Use
We briefly describe an example interaction to demonstrate
LAMVI’s expected use. Suppose Alice has trained a
word2vec model on Jane Austen’s Pride and Prejudice us-
ing the default model parameters. She inspects the nearest
neighbors of “wife”, expecting “husband” to be ranked the

http://playground.tensorflow.org/
http://bit.ly/wevi-online

Visual Tools for Debugging Neural Language Models

highest. Instead, “engagement” and “marriage” are ranked
higher than “husband,”. She wants to find the reason for
this behavior and to fix it. Using LAMVI, she visually in-
spects the vectors of the words in question, and identifies
the most influential contexts that contribute to the false pos-
itive outputs. She then uses LAMVI’s concordance view to
examine the relative positions of these context words to the
query word (“wife”), and finds that many contexts that con-
tribute to the false positives are farther away from “wife”
than those contributing to “husband”. Knowing this, Alice
reduces the context window size, and retrains the model.
LAMVI automatically tracks the ranks of the words of in-
terest across training iterations. By inspecting the rank-
ing records, Alice confirms that “husband” stabilizes at the
highest rank after a few iterations. This example illustrates
one of the many debugging scenarios enabled by LAMVI.

5. The LAMVI Interface
Figure 1 shows a screenshot of LAMVI. The integrated in-
terface supports many common debugging activities, in-
cluding: configuring model parameters, overview of the
training data, pausing training, and stepping in a training
instance (Figure 1-A); specifying input queries and track-
ing the ranks of expected candidate outputs (Figure 1-C);
viewing activation levels of hidden units (Figure 1-B) and
vector interactions (Figure 1-D), as well as inspecting influ-
ential training instances (Figure 4) and checking 2D projec-
tions of vectors of interest (Figure 2).

Figure 2. 2D visualization of word embedding vectors of user-
specified input query, watched candidate outputs, as well as near-
est neighbors of the input query. PCA is used for dimensionality
reduction. The user may label certain candidate outputs as good
or bad, and such candidates will be colored differently.

5.1. Tracking Ranking of Specific Candidates

As shown in Panel C of Figure 1, the user can monitor the
change of ranks of specific candidate words given an input
query she selects. We find that monitoring the rank trend
over iterations can be informative in a number of scenar-
ios. The ideal situation is that an expected “good” can-
didate starts off at a random position and, as the training
proceeds, gradually moves to the top among all candidates
where it stabilizes (e.g., “listened” in Figure 1, Panel C,

given the input term “looked”). If the rank of an expected
output stabilizes at a low rank position, it can be because of
lack of relevant training instances; whereas the rank of an
unexpected output stabilizing at a high rank position may
indicate too much noise in the training data. If the ranks of
multiple watched candidates remain unstable and oscillate,
it can be because the learning rate or the learning rate de-
cay strategy may be set inappropriately, or the training data
contains too much noise.

While the visualization may not identify a single cause, it
narrows the possibilities down and provides avenues for
additional exploration. Rank monitoring provides a high-
level sense of the training process. However, one can dig
deeper into the low-level details of word representations
learned by the model in order to identify the true causes of
certain model behavior.

5.2. Inspecting Vector Representations

We provide three different ways to let the user explore the
vector representations learned by the model.

Figure 3. Inspection of the topic(s) associated with a single vector
component, highlighted by a black rectangle. The query word is
“darcy”.

First, a heat map (Figure 1, Panel B) can directly illustrate
the values of different components of a word vector. Given
a word w, suppose the hidden layer size is K, then its vec-
tor can be denoted as vw = {vw,1, · · · , vw,K}. Each cell
is a color-encoded representation of a vector component,
vw,j , j ∈ {1, · · · ,K}. While the positions of the cells do
not have actual meanings, rendering them as a matrix in-
stead of an array not only makes the layout “tighter,” but
also makes it easier for human eyes to spot patterns. How-
ever, we do recognize the inherent risk that gestalt heuris-
tics will lead the end-user to spot a pattern that isn’t there
(see Chapter 6 of (Ware, 2012)). If the training config-
uration is set properly, the user can typically observe that
the cells start off with random colors, and, as the training
proceeds, a few cells turn darker colors (meaning vw,j is
getting close to either -1 or 1) and stabilize, while a ma-
jority of cells stabilize at lighter colors (vw,j close to 0).
A deviation from this pattern may indicate improper learn-

Visual Tools for Debugging Neural Language Models

ing rate selection (e.g., causing vector components explode
to infinity), error in model implementation, and improper
initial value selection.

Figure 4. Inspecting training instances. The top panels show con-
text words in sentences. The bottom panel compares the learning
rates and contributions of a single sentence by training epoch.

Second, we provide a list of nearest neighbors based on
a specific dimension j∗. When the user selects a specific
cell, e.g. j, the corresponding dimension is then used to
find a ranked list of words {w′} that are both (1) similar to
the current query word w, where similarity is measured by
cosine similarity,

cos(vw, vw′) =
vw · vw′
‖vw‖‖vw′‖

; (3)

and (2) share similar activity as w on dimension j∗, i.e.,
vw,j∗vw′,j∗ is high. Using this view (see Figure 3), the
end-user can gain an understanding of the “meaning” of a
dimension by observing which words are activated.

Third, LAMVI offers a 2D plot showing the nearest neigh-
bors of the query as well as all the watched candidates (see
Figure 2). We use principal component analysis (PCA) for
dimensionality reduction.3 As the training proceeds, the
user can monitor the change of the positions of vectors, and
even potentially spot interesting clusters.

3One can also use many other techniques, such as t-
SNE (Van der Maaten & Hinton, 2008).

While these visual tools allow the user to quickly gain in-
sights into what is learned by the model, they do not di-
rectly answer why certain candidates are ranked higher than
others.

5.3. Inspecting Interactions of Vectors

To understand how a pair of vectors (vw, vw′) become
“close neighbors” we would like to inspect the training in-
stances we have encountered. We can calculate, among all
the training instances we have encountered while learning
(vw and vw′), which ones are the most influential. Figure 1,
Panel D) illustrates two ways of inspecting such results.

First, we can show the element-wise product of the two
vectors, i.e., {vw,1vw′,1, · · · , vw,Kvw′,K} as a heatmap.
As the user focuses on individual cells, we show which
words are most activated by that corresponding vector com-
ponent. Through this view the user can get an idea of what
topics are shared by the two words.

Second, we show a list of training instances that have made
the most contributions. Each instance is a context word wc

encountered for the word of interest w during training, and
the contribution of the instance is the L2 norm of the gra-
dient on vw when that instance is encountered, i.e., ‖ ∂E

∂vw ‖,
where E is the learning objective.

For example, if the vectors of two characters’ names are
close (e.g., “darcy” and “bennet”), we may observe that
they share most influential features related to human be-
ings, such as “mr.” and “mrs.” When some expected fea-
tures do not show up, the user may consider actions such
as improving the corpus preprocessing routine or adjusting
the window size.

5.4. Inspecting Training Instances

Since an influential feature may occur in multiple sentences
throughout the corpus, we may want to go further and
inspect which specific training instances (i.e., sentences)
contribute the most to certain associations learned by the
model. Figure 4 illustrates two of our solutions.

First, we borrow the idea of concordances and show a
ranked list of sentence snippets from which the influential
features are extracted. These snippets are ranked, again,
by their contributions to the position of vw. By inspect-
ing the actual sentences one may spot errors or potential
improvements to be made in the corpus preprocessing rou-
tines (e.g., “mr. darcy” may be concatenated as a phrase
to distinguish the term from “mrs. darcy”), or make better
judgment about the size of the context window.

Second, since a single sentence may be encountered mul-
tiple times in different training epochs we need access to
the contribution each context has made. In the interface we

Visual Tools for Debugging Neural Language Models

show what learning rate is applied to the contexts in the
sentence (in each epoch), and what contributions (again, in
the epoch) that the context has made to vw. By inspect-
ing such information, the user may compare the effects of
different relevant hyperparameters, including learning rate,
speed of learning rate decay, downsampling, and negative
sampling. For example, if the user spots that some “good”
features are downsampled too heavily, she may consider
adjusting the “sampling” hyperparameter of the model to
avoid losing important signals in the corpus.

Note that there are hazards of overfitting the specific in-
stances inspected here. The user should always check mul-
tiple instances and have a benchmark to keep track of the
model’s overall performance. Ideally, future instances of
the tool can help guard against this by better supporting
this kind of tracking.

6. Discussions
There are several aspects of the system that we are working
to improve.

Scaling up: The current implementation of LAMVI runs
fully in the browser and can only support a small corpus
and vocabulary. However, the framework and visual tools
are designed to be extensible to support full-sized models
with millions of words in the vocabulary using a server-
client model. Since most interactive visualizations are fo-
cused on a watch-list of just a few words, the overhead
of logging additional information per training instance is
small. Also note that training efficiency is not usually the
primary concern for those who are debugging the model for
its quality.

Scaling to other embedding models: The proposed
framework can be extended to support a full range of em-
bedding models, including GloVe (Pennington et al., 2014),
DeepWalk (Perozzi et al., 2014), and LINE (Tang et al.,
2015), because they all share the same underlying neural
network architecture. Our framework can also be adapted
to embedding models with (slightly) more complex struc-
tures, such as Doc2Vec (Le & Mikolov, 2014) and bimodal
embedding models (Allamanis et al., 2015). Adapting to
these would require making model-dependent modification
to the visualization interface, such as adding a new input
channel (e.g. document identity, or input of a different
modality). However, the nature of inspecting vector simi-
larity, vector interaction, and tracking the ranks of watched
candidate items will remain the same.

Scaling to sequential contexts: It is also possible to ex-
tend LAMVI to support neural language models that make
predictions using sequential contexts. For example, mem-
ory networks can “generate” sentences given a few cue
words or a piece of computer source code given a few

characters (Karpathy et al., 2015). To debug such models,
The user may specify the inputs as a sequence of words
or characters, and observe, as the model consumes train-
ing data, how different candidate words or characters are
reranked among the model’s predicted probabilistic distri-
bution. One may also look “further into the future”, making
the model generate N words or characters in a row, and in-
specting how the likelihood of generating a given expected
output evolves as the training proceeds. However, it can be
challenging to locate specific influential training instances
in a meaningful way given the complex nature of sequential
contexts.

Explaining model behavior: There are many limitations
to our current way of defining most influential training in-
stances or features. An important part of our future work is
to develop meaningful metrics that distinguish which set of
training instances or which aspect of the model configura-
tions is most responsible for a given candidate being ranked
higher than another.

Supporting exploratory data analysis: In our system, as
the model consumes training instances, a wide variety of
information is logged. For example: the ranks of watched
vectors, their gradients, and learning rates. When using
LAMVI to debug a model, the user may have her own in-
formation need. Therefore, providing an exploratory data
analysis environment provides the end-user with greater
flexibility in terms of generating different visualizations
and getting insights from the model’s training footprint.
For example, the user may define customized grouping of
the contexts (e.g. by part-of-speech, or rarity of words),
and inspect the influences of these training instances cate-
gory by category.

Linguistic regularity: Our current implementation also
supports inspecting the emergence of linguistic regularity
captured by the model. The user may enter queries like
“king –queen woman” and observe how the desired candi-
date, “man”, evolves. The user may also inspect the acti-
vation levels of the hidden units given all three words as
context.

Model diff: Our current version does not support direct
comparison between two model versions trained with dif-
ferent configurations. Such comparison can be potentially
very useful, as the user may directly see the effects of
changing one hyperparameter. It would also be interest-
ing to enable the user to adjust the model configurations
and see what potential impact that configuration may have
on the contributions of specific features on-the-fly, which
can, nonetheless, be far more challenging than doing diffs
on trained models.

Avoiding overfitting: A potential hazard of the presented
debugging pattern is that the user may possibly overfit the

Visual Tools for Debugging Neural Language Models

specific cases that she selects to focus on, and fail to make
the model work well on the overall dataset. Therefore, it is
important that the user combine such kind of case-specific
debugging routines with benchmark-based testing mecha-
nisms (train/validate/test routines) to avoid overfitting. It
would also be interesting to develop a recommended work-
flow/debugging strategy that combines low-level and high-
level debugging routines.

7. Conclusion
In this paper we have described LAMVI, a work-in-
progress interactive tool that supports the debugging of
neural language models. The visual components of
LAMVI are designed to support end-user inspection of
model inputs and outputs of the model as well as hidden
layers. At a high level, our objective is to support a devel-
oper’s process of model training. Specific “bugs” can be
detected, and decisions on which pieces to tune are sup-
ported through the GUI. Through the interface, for exam-
ple, the developer can understand what training instances
lead to the learned associations of the representations, and
how the model hyperparameters may impact the results.
We provided a preliminary analysis on the usefulness of
the model via specific examples and listed a number of di-
rections for future development.

[Code and data will be available at https://github.
com/ronxin/lamvi/].

References
Allamanis, Miltos, Tarlow, Daniel, Gordon, Andrew, and

Wei, Yi. Bimodal modelling of source code and natu-
ral language. In Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pp. 2123–
2132, 2015.

Anthony, Laurence. Antconc (version 3.2. 2)[computer
software]. Tokyo, Japan: Waseda University, 2011.

Chuang, Jason, Manning, Christopher D, and Heer, Jeffrey.
Termite: Visualization techniques for assessing textual
topic models. In Proceedings of the International Work-
ing Conference on Advanced Visual Interfaces, pp. 74–
77. ACM, 2012.

Chuang, Jason, Gupta, Sonal, Manning, Christopher, and
Heer, Jeffrey. Topic model diagnostics: Assessing do-
main relevance via topical alignment. In Proceedings of
the 30th International Conference on Machine Learning
(ICML-13), pp. 612–620, 2013.

Cui, Weiwei, Liu, Shixia, Wu, Zhuofeng, and Wei, Hao.
How hierarchical topics evolve in large text corpora. Vi-

sualization and Computer Graphics, IEEE Transactions
on, 20(12):2281–2290, 2014.

Jolliffe, Ian. Principal component analysis. Wiley Online
Library, 2002.

Karpathy, Andrej, Johnson, Justin, and Li, Fei-Fei. Vi-
sualizing and understanding recurrent networks. arXiv
preprint arXiv:1506.02078, 2015.

Kruskal, Joseph B. Multidimensional scaling by optimiz-
ing goodness of fit to a nonmetric hypothesis. Psychome-
trika, 29(1):1–27, 1964.

Kulesza, Todd, Stumpf, Simone, Wong, Weng-Keen, Bur-
nett, Margaret M, Perona, Stephen, Ko, Andrew, and
Oberst, Ian. Why-oriented end-user debugging of naive
bayes text classification. ACM Transactions on Interac-
tive Intelligent Systems (TiiS), 1(1):2, 2011.

Lai, Siwei, Liu, Kang, Xu, Liheng, and Zhao, Jun. How
to generate a good word embedding? arXiv preprint
arXiv:1507.05523, 2015.

Le, Quoc V and Mikolov, Tomas. Distributed represen-
tations of sentences and documents. arXiv preprint
arXiv:1405.4053, 2014.

Levy, Omer, Goldberg, Yoav, and Dagan, Ido. Improving
distributional similarity with lessons learned from word
embeddings. Transactions of the Association for Com-
putational Linguistics, 3:211–225, 2015.

Liu, Shixia, Zhou, Michelle X, Pan, Shimei, Qian, Wei-
hong, Cai, Weijia, and Lian, Xiaoxiao. Interactive, topic-
based visual text summarization and analysis. In Pro-
ceedings of the 18th ACM conference on Information
and knowledge management, pp. 543–552. ACM, 2009.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jef-
frey. Efficient estimation of word representations in vec-
tor space. arXiv preprint arXiv:1301.3781, 2013.

Pennington, Jeffrey, Socher, Richard, and Manning,
Christopher D. Glove: Global vectors for word repre-
sentation. In EMNLP, volume 14, pp. 1532–1543, 2014.

Perozzi, Bryan, Al-Rfou, Rami, and Skiena, Steven. Deep-
walk: Online learning of social representations. In Pro-
ceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp.
701–710. ACM, 2014.

Rong, Xin. word2vec parameter learning explained. arXiv
preprint arXiv:1411.2738, 2014.

Rong, Xin, Chen, Zhe, Mei, Qiaozhu, and Adar, Ey-
tan. Egoset: Exploiting word ego-networks and user-
generated ontology for multifaceted set expansion, 2016.

https://github.com/ronxin/lamvi/
https://github.com/ronxin/lamvi/

Visual Tools for Debugging Neural Language Models

Samek, Wojciech, Binder, Alexander, Montavon, Grégoire,
Bach, Sebastian, and Müller, Klaus-Robert. Evaluat-
ing the visualization of what a deep neural network has
learned. arXiv preprint arXiv:1509.06321, 2015.

Sievert, Carson and Shirley, Kenneth E. Ldavis: A method
for visualizing and interpreting topics. In Proceedings
of the workshop on interactive language learning, visu-
alization, and interfaces, pp. 63–70, 2014.

Tang, Jian, Qu, Meng, Wang, Mingzhe, Zhang, Ming, Yan,
Jun, and Mei, Qiaozhu. Line: Large-scale information
network embedding. In Proceedings of the 24th In-
ternational Conference on World Wide Web, pp. 1067–
1077. International World Wide Web Conferences Steer-
ing Committee, 2015.

Van der Maaten, Laurens and Hinton, Geoffrey. Visualizing
data using t-sne. Journal of Machine Learning Research,
9(2579-2605):85, 2008.

Ware, Colin. Information visualization: perception for de-
sign. Elsevier, 2012.

Yosinski, Jason, Clune, Jeff, Nguyen, Anh, Fuchs,
Thomas, and Lipson, Hod. Understanding neural
networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

