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Abstract

CNN can model the complex underline mappings
between images and categories through several
layers via non-linear activation function. How-
ever, it is hard to analyze the non-linear relation
learned in the CNN. In this paper, we show that a
set of well-performed CNNs (composed of con-
volutional layers, max-pooling layers and ReLU)
are piecewise linear, i.e., linear at every single
image. The nice property means that the out-
put/score of a neuron is a linear combination of
outputs of any lower layer for an image. With the
property, we can distribute the score of a neuron
to every position of a lower layer to probe where
contributes more for the score of the neuron.

1. Introduction

Deep Convolutional Neural Networks (CNN) have become
an essential machine learning method for object recog-
nition, since it was proposed in computer vision (LeCun
et al., 1989). Continuous efforts have been involved to im-
prove CNN’s performance in image classification. Mean-
while, the CNNs with more weight layers have made sig-
nificant progress in many research areas, such as face de-
tection (Sun et al., 2013) (Taigman et al., 2014), objec-
t segmentation (Girshick et al., 2014) (Hariharan et al.,
2014), object detection (Zhang et al., 2014) (Erhan et al.,
2013) and human pose estimation (Toshev & Szegedy,
2014) (Chen & Yuille, 2014). Currently, more researchers
attempt to gain insights into the learned CNN in detail, and
some approaches are proposed to understand CNN through
visualizing CNN model using feedback information. The
core idea is visualizing feature to gain intuition about CNN
on any layers, while traditional approaches are limited to
the first convolutional layer.
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The feedback process can be realized implicitly through
showing the filters on any layers (Girshick et al., 2014).
The patches covered by a specific neuron can be found in
original image based on the mapping between layers. The
non-parametric method captures the patches corresponding
to high activations on a large-scale set of candidate patch-
es, and shows the invariance computed by the selected neu-
ron. This simple but effective approach regards the unit as
a pattern detector, which directly shows the visual modes
on different layers.

A visually attractive deconvolutional approach (Zeiler &
Fergus, 2014) is presented to reveal the input individual
feature maps at any layer in a learned model. The feed-
back information is transferred along with a multi-layered
deconvolutional network, and the selected feature activa-
tions can be projected back to the input layer. Although the
reconstructed patches are not projected back to the original
image space, the visualization ability is a great complemen-
tary tool to show the pattern for specific filters.

The gradient can be utilized as feedback information (Si-
monyan et al., 2013) to visualize the convolutional net-
works.  The specific class model can be visualized
through maximizing the corresponding neuron of last full-
connected layer. For a specific image, the gradient of a
selected class can be easily computed using a single back-
propagation pass through CNN. Then the gradient based
image-specific class saliency map can be used for weak-
ly supervised object localization. To some extent, the gra-
dient based visualization approach is equivalent or similar
to the reconstruction based deconvolutional network as the
discussion in (Simonyan et al., 2013). Thus, the gradient
based visualization and reconstruction based visualization
are unified and complementary.

In this paper, we propose to translate the image-specific
prediction to linear form, and name it as score map. On
one hand, score map can search the sub-image with high
probabilities to be foreground objects. On the other hand,
score map is produced to highlight the local patterns with
discriminative content,
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Figure 1. The summary of prediction strategies. (a): A received structure of CNN introduced by (Krizhevsky et al., 2012). (b): Single
corp based prediction just capture one patch with fixed size as input view. (c): Multiple crops are cropped from fixed locations, such
as four corner and center (Krizhevsky et al., 2012). (d): Multi-crop based prediction extracts views using sliding windows (Simonyan
& Zisserman, 2014). (e): Multi-crop with specific stride based prediction extracts views from the output of one layer, where previous

layers work on original image size.

2. Score map for single input image
2.1. The prediction architecture

Currently, most outstanding CNN are designed with fixed
input size due to the technical issue as perviously men-
tioned. However, the actual images and most popular
datasets, such as ImageNet (Russakovsky et al., 2014) and
PASCAL VOC (Everingham et al.), provide the test im-
ages with arbitrary size. Thus, many classification strate-
gies were introduced for the learned CNN model with fixed
input image size predicting the test images with arbitrary
size, as shown in Fig. 1.

Generally, a trained CNN model (Fig. 1 (a)) requires input
view with fixed size (Fig. 1(b)). In practice, CNN predicts
multiple crops at test time, since single crop is less per-
suasive for the whole image. For instance, CNN predicts
specific crops in fixed locations and average the final classi-
fication results over the predictions of all crops (Fig. 1(c)).
Moreover, multi-crop prediction is implemented using slid-
ing windows (Fig. 1(d)), rather than fixed location. In order
to improve efficiency, more tasks slide window over one
mediate layer to share the previous layers, since convolu-
tional layers and pooling layers can be operated on arbitrary
size (Figure 1(e)). However, this way only is equivalent to
slide windows over input image with specific stride, con-
sidering the stride of convolutional filter or pooling kernel.

Although multi-crop prediction is more reasonable com-
pared with single crop, the prediction with more views
doesn’t mean more accuracy. We implement multi-crop
prediction based on the basic CNN structure through s-
liding feature window on the last pooling layer, where the
sizes of previous convolutional and pooling layers both de-
pend on the size of input image. In this paper, all processes
are realized based on the multi-crop prediction framework.

2.2. The linear form of multi-view prediction
architecture

The CNN is piecewise linear function, which divides the
image space into massive of linear regions (Montufar et al.,
2014). Thus, CNN shows the linearity in one linear region-
s. In feedforward process, the nonlinearity of basic CNN
is caused by max-pooling layer and rectifier units, while
both convolutional layer and fully-connected layer are lin-
ear. Through recording the pooling location and rectified
information, the image-specific CNN can be represented as
linear form, which also is treated as the feedback process
from one label. As mentioned in 2.1, we will discuss the
linear form of the multi-crop prediction architecture, which
is built to predict the input image with arbitrary size.

There are three differences between basic CNN and multi-
view prediction architecture: (1) the convolutional and
pooling layers with unfixed size, the previous layers all
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are adjusted to fit the size of input image; (2) sliding layer,
an additional sliding layer is introduced, since the operation
of window sliding can be treated as a special convolution
operation, and the size of feature window is same with the
first following layer in basic CNN; (3) sum-pooling layer,
one additional sum-pooling layer is introduced to average
the predictions of the extracted views. All these three ad-
ditional layers are linear, which the feedback process of
multi-crop prediction architecture for one specific image is
linear.

The operation of fully-connected layer is inherently linear:
Y = R(FX +b) (1)

where Y and X are the output and input of the fully-
connected layer with the vector form. F' is the weight ma-
trix. b is the bias. R corresponds to the operator of ReL.Us,
where the diagonal record the rectified information.

Similar to Eq. 1, other layers also can be reformulated as
linear form through transforming the weights. For exam-
ple, in the linear representation of convolutional layer, the
output and input are resized as vectors. The weights of fil-
ters are assigned to corresponding position of each row of
F. In the linear representation of max-pooling layer, each
row of F' only contains one weight 1 corresponding to the
pooling position, and weights 0 on other positions. R is the
identity matrix and b is the zeros vector.

Therefore,the multi-view prediction architecture can be
formulated as linear form based on Eq. 1:

}/l :Rl(ﬂifl—1+bl)7l: 17"'5L (2)

where Y] is the output of the [* layer, and Yj is the input
image. Fj is the weight matrix of the I*" layer. L is the
count of layers. For example, our multi-view prediction
architecture is composed of 13 layers, including 5 convolu-
tional layers, 3 pooling layers, 3 fully-connected layers, 1
sliding layer and 1 sum-pooling layer.

2.3. Score map of specific label

In practice, the output of last fully-connected layer are
the predicted scores of all labels, while the soft-max lay-
er translates the predicted scores into the probability Based
on Eq. 2, the predicted scores of label c can be represented
as the linear form with output of any layer:

Sre=Are1Yr1+Brei,1=0,...,L 3)

where St . is the cth label’s predicted score of image I, Y7 ;
is the ['" layer’s output of image I resized as vector. Ar .,
and By . are produced based on iterative Eq. 2.

In order to define score map, we first consider the prod-
uct of one activation and corresponding coefficient in E-
g. 3, which is treated as sub-score of the activation to cor-
responding label. These sub-scores are able to measure the
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Figure 2. The score maps of different layers for groundtruth la-
bel. Left-top shows the example of input image. Others are the s-
core maps of different layer, including convolutional layers, max-
pooling layers and image layer. We adjust the size of score maps
to the size of input using interpolation.

degree of one activation predicting as specific label. Fur-
ther, the score map of one layer can be produced through
summing all channels of sub-score, which measures the de-
gree of locations predicting as specific label. In order to
capture score map, we resize Ay .; and Y7 ; as 3-D matrix
with the size of the output of " layer. Then, the image I’s
score map of I*" layer for label ¢ can be represented as:

MI,c,l(mvy) = Z AI,c,l(xvya h)YI,l(xay,h) (4)
1<h<H

where M .; is image I’s score map of [th layer for label
c. (z,y) is the grid coordinate of the [ layer’s output.
H is the channels’ number of [*" layer and A the index of
channel.

In particular, the score maps of different labels are distin-
guishing, even produced on the output of same layer. The
score maps represent the regions responding to correspond-
ing label, which also can be treated as saliency maps. The
score maps of an example image are shown in Fig. 2.

3. Score map based saliency map

The score map based saliency map can be captured based
on the linear form of multi-view prediction architecture.
Different from low-level feature driven saliency map, the
score map is guided by high-level class label and rich se-
mantic information, which makes score map focus on the
objects of the training classes. As shown in Fig. 3, high
score value of score map tends to be located surrounding
the regions with help for prediction. In top example, high
score value tends to locate the discriminative region, such
as the head of dog. In middle example, the people is of rich
semantical, but the class of people is not to be predicted.
Thus, the region with people is treated as background and
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Figure 4. The semantical patches extracted from two convolutional layers based on SMSM and GSM. The saliency value of GSM is

captured following the procedure of (Simonyan et al., 2013).
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Figure 3. The score map with respect to groundtruth label. The
high score tends to locate the discriminative content for predic-
tion. The size of pool5’s score map also are interpolated as the
size of input image

with low score value. In bottom example, high score val-
ue tends to locate surrounding regions of label alp, where
the contextual information is helpful for prediction. Obvi-
ously, the score map is help helpful to crop discriminative
regions, which keeps from introducing artificial occlusion.
We will introduce the algorithm of score map based crops
selection in following section.

4. Score map based semantical pattern

Score map can be treated as the distribution of the predict-
ed score of specific label. Thus, the high score value is of
strong semantic with respect to specific class. We attempt
to compare the score map based saliency map (SMSM) and
gradient based saliency map (GSM). As shown in Fig. 4,
we present the patches with high values of SMSM and
GSM respectively. Compared with the GSM, the patches of
SMSM contain more discriminative content, which is help
for prediction. For instance, for the kit fox class, SMSM
highlights the eye and nose on 4" conv layer, while GSM
highlights fur. For the black grouse class, SMS highlights
the comb on 4 conv layer, while GSM highlights feath-
er and even grass. The obvious difference is presented on
the 4*" conv layer, since the receptive field of 7¢" conv lay-
er owns larger size and contains more context. However,
SMSM still highlights the semantical patches on 7" conv
layer, such as wing class and castle class.
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