
Effective Visualizations for Training and Evaluating Deep Models

Luke Yeager LYEAGER@NVIDIA.COM
Greg Heinrich GHEINRICH@NVIDIA.COM
Joe Mancewicz JMANCEWICZ@NVIDIA.COM
Michael Houston MHOUSTON@NVIDIA.COM

NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA

Abstract
Training and deploying a deep neural network
model can be a long and complicated ordeal. It
involves gathering and processing a large amount
of data, iterating over various network archi-
tectures and optimization hyperparameters, and
evaluating trained models with various complex
techniques. Throughout the process, visualiza-
tions can help users understand information and
debug problems. In this paper, we survey some
visualization techniques and discuss which are
effective in decreasing the time required to reach
a working solution.

1. Introduction
Over the past few years, deep learning has proved itself
to be a powerful, viable tool for solving real problems in
a wide range of applications. As deep neural networks
(DNNs) win competitions (Krizhevsky et al., 2012), revo-
lutionize common interfaces (Hannun et al., 2014) and even
produce art (Gatys et al., 2015), the number of companies
and individuals investing time and money in deep learning
steadily grows. And yet, as our dependence on this tech-
nology grows, in some ways we still know very little about
why it works or even what it is doing under the hood. This
leads to some of the best minds in the field saying things
like “I can’t explain this discrepancy between theory and
practice” (Krizhevsky, 2014). Thus, many researchers have
invested time in developing new techniques for analyzing
deep models and exploring what they have “learned.”

In this paper we will survey some of the different areas of
opportunity for visualization and list some common tech-
niques. In addition to analyzing trained models, we will
explore different ways to analyze datasets and training runs

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

which can provide just as much if not more value.

Where possible, we will present examples of these
techniques in action inside of DIGITS. NVIDIA pro-
vides DIGITS under the BSD license, available at
http://github.com/NVIDIA/DIGITS.

2. Opportunities for Visualization
The deep learning pipeline provides opportunities for vi-
sualizations at every step. Representing data visually en-
ables users to catch errors more quickly and interpret re-
sults more accurately. As we enumerate some of the oppor-
tunities and analyze different techniques, we will be show-
ing examples of data and models related to images. Though
DNNs can be used for many other types of data, images are
the simplest to visualize and among the most used in prac-
tice.

2.1. Data Preparation

Real-world data comes in various sizes and formats, while
most networks have rigid requirements for input tensors
(Krizhevsky et al., 2012) (Hannun et al., 2014). So, the
first task of many would-be deep learning users is to con-
vert their data into the required format. For example, when
choosing how to resize images the user may choose to crop
them in order to preserve aspect ratio, or they may instead
want to squash them into the required size so as not to throw
away any regions of interest at the edges. When choosing
between options such as these, simply generating and dis-
playing an example image explains the trade-offs and en-
ables the user to make the correct choice for his or her ap-
plication. See Figure 1 for an example of this in DIGITS.

2.2. Dataset Analysis

Pre-processed data is often collected into a single database
or folder before training begins. Providing some simple
visualizations of the data and an interface for accessing
the contents can help avoid configuration errors which, if



Effective Visualizations for Training and Evaluating Deep Models

Figure 1. Example images and file sizes for different data trans-
formation options

not caught at this stage, can lead to cryptic errors and odd
behavior later during training or inference. Figures 2 and
3 show some examples of useful dataset visualizations in
DIGITS.

Figure 2. Graph of the distribution of classes in a dataset

2.3. Designing a Network Architecture

A neural network is essentially a dataflow graph of nodes
(layers) passing data (tensors) to other nodes in the graph.
Designing these networks is an obvious candidate for visu-
alizations because these networks are usually specified with
code or some structured text, but can be displayed graph-
ically as a dataflow graph. Figure 4 shows an example of
DIGITS displaying a Caffe network as a graph.

Some tools exist for designing architectures with a graph-
ical interface, but this is not necessarily an ideal solution
for all use cases. Networks with more than 100 layers (He
et al., 2015) may be easier to design programmatically than
graphically. The best solution would likely be a side-by-
side combination of these two methods. As with some
IDEs, the user could edit the network by either directly edit-
ing the code or by clicking and dragging the UI elements
around and the tool would automatically update the graph
based on the code, or vice versa.

Figure 3. Browsing through entries in a dataset

Figure 4. Visualization of a Caffe network architecture

2.4. Learning Rate

In addition to specifying a network architecture, some op-
timization hyperparameters must be chosen when training
a DNN. Options include things like different optimization
algorithms, the number of epochs through the training data,
and the initial learning rate. Typically for gradient descent,
the learning rate is chosen to decrease over time according
to some formula. A simple but useful visualization tool is
to graph the projected learning rate based on the selected
policy. See Figure 5 for some examples.

2.5. Training Outputs

While training a model, certain metrics like loss and ac-
curacy are used to measure the quality of the model over
time. Plotting these values is perhaps the quintessential vi-



Effective Visualizations for Training and Evaluating Deep Models

Figure 5. Projected curves for the selected learning rate options

sualization for machine learning. Everyone does it because
it is trivial to display and extremely informative. Figure 6
shows loss curves which let the trained eye distinguish a
good training session from a bad one with a mere glance.

Figure 6. Graphs of training outputs - a well behaved network, an
overfit network, an oddly behaved network, and a network with
many outputs

Another metric that can be useful to display while training
is the change in weights and gradients for each layer over
time. For large networks, this can be a large amount of
data to display, and it my not always be clear what “good”
behavior looks like. But it can help identify the “vanishing
gradient” and “exploding gradient” problems that tend to
plague back-propagation networks.

2.6. Model Analysis

Training a network produces a series of trained models.
The most straightforward way to test a model is to perform
inference on it with some test data. We will address some
of those techniques in the next section, but first, we will
look at a few ways to analyze the model without using any
test data.

For convolutional networks trained on image data, it can
be instructive just to view the weights displayed as images
(see Figure 7 for an example). This technique is not partic-
ularly useful for smaller convolution layers or inner product
layers, however.

Another popular technique for analyzing a model without

Figure 7. Inference weights and activations

using test data is to generate synthetic inputs. For each neu-
ron in the network, there are various techniques (Zeiler &
Fergus, 2013), (Erhan et al., 2009), (Yosinski et al., 2015),
(Le et al., 2011) to generate the input which maximally
stimulates the neuron. Each of the proposed techniques has
its own downfalls in terms of image quality, complexity, or
speed of computation. Also, without a well-designed inter-
face, the results can be difficult to navigate. But digging
through the network can lead to some interesting discover-
ies about what the network has “learned.”

2.7. Single Inference

Performing inference on a test input is a great way to test
a deep model and there are some intriguing visualizations
that come as a result. The simplest thing to do is to simply
simulate the model as it would be used in production - run
inference on a single image and check the answer. Figure
8 shows an example of single inference on an image clas-
sification model in DIGITS, and Figure 9 shows one for an
object detection model.

While performing inference, the network is passing tensors
of data in-between the various layers. Those intermediate
tensors, called activations, can be also useful to visualize.
As with the layer weights (Section 2.6), this technique is
useful for some layers in some networks, but not in general.
See Figure 7 for an example of activation visualization.

With techniques very similar to those used to generate max-
imally stimulating images (Section 2.6), it is also possible
to visualize which part of the input image contributed to
the activation of each neuron (Samek et al., 2015). This



Effective Visualizations for Training and Evaluating Deep Models

Figure 8. Inference on a classification network

Figure 9. Inference on an object detection network

lets you say things like “This neuron is activated by the
ears on a cat.” It is possible to use techniques like this to
explore whether higher layer neurons may be activated by
higher level features like complex shapes while lower layer
neurons may be activated by lower level features like tex-
tures. As discussed previously, some of these techniques
are difficult to implement or are computationally expen-
sive. But in general, the results from this type of visualiza-
tion are more interpretable than the images generated for
maximally stimulating inputs since they highlight portions
of real-world data.

2.8. Multiple Inference

There are other opportunities for visualization related to
performing inference on multiple inputs and aggregating
the results. A canonical example is the confusion matrix
(see Figure 10). For classification networks, it can tell you
which classes are more difficult for the network to accu-
rately classify. This is a very useful result because it can
translate into concrete actions like gathering more data for
difficult categories, for example.

Another technique is to display a list of inputs from the test
set which maximally stimulated a specific neuron during
inference. This is in some ways similar to the technique of
generating maximally stimulating images discussed in Sec-

Figure 10. Confusion matrix

tion 2.6, but it does not require any special algorithms and
produces a list of real images. This simple technique has
been used in many papers to great effect (Le et al., 2011)
(Yosinski et al., 2015) (Zeiler & Fergus, 2013), and is a
useful tool in the training pipeline. Figure 11 shows exam-
ples in DIGITS of maximally stimulating images for output
neurons in classification models.

Figure 11. Top activations from a test set for output neurons of
classification models

3. Conclusion
Despite the wide range of tools and frameworks avail-
able for deep learning, successfully training and deploy-
ing a DNN model is still pretty complicated and error-
prone. Throughout the process, well-placed visualizations
can help to avoid errors and interpret results, leading to a
quicker solution.

We have surveyed several of these opportunities for visu-



Effective Visualizations for Training and Evaluating Deep Models

alization and presented some popular solutions, but the list
is far from comprehensive. We have also presented a prod-
uct which attempts to put these lessons into practice. DIG-
ITS builds on the experience and innovations of many re-
searchers to provide a solution which uses visualizations to
aid users on their quest to harness deep learning in their
applications.

References
Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Vi-

sualizing higher-layer features of a deep network. Tech-
nical Report 1341, University of Montreal, June 2009.
Also presented at the ICML 2009 Workshop on Learn-
ing Feature Hierarchies, Montréal, Canada.

Gatys, L. A., Ecker, A. S., and Bethge, M. A neural al-
gorithm of artistic style. CoRR, abs/1508.06576, 2015.
URL http://arxiv.org/abs/1508.06576.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B. C.,
Diamos, G., Elsen, E., Prenger, R., Satheesh, S., Sen-
gupta, S., Coates, A., and Ng, A. Y. Deep speech:
Scaling up end-to-end speech recognition. CoRR,
abs/1412.5567, 2014. URL http://arxiv.org/
abs/1412.5567.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.
URL http://arxiv.org/abs/1512.03385.

Krizhevsky, A. One weird trick for parallelizing convo-
lutional neural networks. CoRR, abs/1404.5997, 2014.
URL http://arxiv.org/abs/1404.5997.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Ima-
genet classification with deep convolutional neural
networks. In Pereira, F., Burges, C.J.C., Bot-
tou, L., and Weinberger, K.Q. (eds.), Advances
in Neural Information Processing Systems 25,
pp. 1097–1105. Curran Associates, Inc., 2012.
URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep.
-convolutional-neural-networks.pdf.

Le, Q. V., Monga, R., Devin, M., Corrado, G., Chen, K.,
Ranzato, M., Dean, J., and Ng, A. Y. Building high-
level features using large scale unsupervised learning.
CoRR, abs/1112.6209, 2011. URL http://arxiv.
org/abs/1112.6209.

Samek, W., Binder, A., Montavon, G., Bach, S., and
Müller, K. Evaluating the visualization of what a deep
neural network has learned. CoRR, abs/1509.06321,
2015. URL http://arxiv.org/abs/1509.
06321.

Yosinski, J., Clune, J., Nguyen, A. Mai, Fuchs, T., and Lip-
son, H. Understanding neural networks through deep vi-
sualization. CoRR, abs/1506.06579, 2015. URL http:
//arxiv.org/abs/1506.06579.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013.
URL http://arxiv.org/abs/1311.2901.

http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1404.5997
http://papers.nips.cc/paper/4824 -imagenet-classification-with-deep.-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824 -imagenet-classification-with-deep.-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824 -imagenet-classification-with-deep.-convolutional-neural-networks.pdf
http://arxiv.org/abs/1112.6209
http://arxiv.org/abs/1112.6209
http://arxiv.org/abs/1509.06321
http://arxiv.org/abs/1509.06321
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1311.2901

