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Abstract
We conduct large-scale studies on ‘human at-
tention’ in Visual Question Answering (VQA)
to understand where humans choose to look
to answer questions about images. We design
and test multiple game-inspired novel attention-
annotation interfaces that require the subject to
sharpen regions of a blurred image to answer
a question. Thus, we introduce the VQA-HAT
(Human ATtention) dataset. We evaluate at-
tention maps generated by state-of-the-art VQA
models against human attention both qualita-
tively (via visualizations) and quantitatively (via
rank-order correlation). Overall, our experiments
show that current attention models in VQA do
not seem to be looking at the same regions as hu-
mans.

1. Introduction
It helps to pay attention. Humans have the ability to quickly
perceive a scene by selectively attending to parts of the im-
age instead of processing the whole scene in its entirety
(Rensink, 2000). Inspired by human attention, a recent
trend in computer vision and deep learning is to build com-
putational models of attention. Given an input signal, these
models learn to attend to parts of it for further processing
and have been successfully applied in machine translation
(Bahdanau et al., 2014; Firat et al., 2016), object recogni-
tion (Ba et al., 2015; Mnih et al., 2014; Sermanet et al.,
2014), image captioning (Xu et al., 2015; Cho et al., 2015)
and visual question answering (Yang et al., 2015; Lu et al.,
2016; Xu & Saenko, 2015; Xiong et al., 2016).

In this work, we study attention for the task of Visual Ques-
1Denotes equal contribution.

Figure 1. Different human attention regions based on question
(best viewed in color).

tion Answering (VQA). Unlike image captioning, where
a coarse understanding of an image is often sufficient for
producing generic descriptions (Devlin et al., 2015), visual
questions selectively target different areas of an image in-
cluding background details and underlying context. This
suggests that a VQA model may benefit from an explicit
or implicit attention mechanism to answer a question cor-
rectly.

In this work, we are interested in the following questions:
1) Which image regions do humans choose to look at in or-
der to answer questions about images? 2) Do deep VQA
models with attention mechanisms attend to the same re-
gions as humans?

We design and conduct studies to collect “human attention
maps”. Fig. 1 shows human attention maps on the same im-
age for two different questions. When asked ‘What type is



Human Attention in VQA: Do Humans and Deep Networks Look at the Same Regions?

(a) (b) (c)

Figure 2. (a-c): Column 1 shows deblurred image, and column 2 shows human attention map.

the surface?’, humans choose to look at the floor, while at-
tention for ‘Which game is being played?’ is concentrated
around the player and racket.

These human attention maps can be used both for evalu-
ating machine-generated attention maps and for explicitly
training attention-based models.

Contributions. First, we design and test multiple game-
inspired novel interfaces for collecting human attention
maps of where humans choose to look to answer ques-
tions from the large-scale VQA dataset (Antol et al., 2015);
this VQA-HAT (Human ATtention) dataset will be released
publicly. Second, we perform qualitative and quantita-
tive comparison of the maps generated by state-of-the-
art attention-based VQA models (Yang et al., 2015; Lu
et al., 2016) and a task-independent saliency baseline (Judd
et al., 2009) against our human attention maps through
visualizations and rank-order correlation. We find that
machine-generated attention maps from the most accurate
VQA model have a mean rank-correlation of 0.26 with hu-
man attention maps, which is worse than task-independent
saliency maps that have a mean rank-correlation of 0.49.
It is well understood that task-independent saliency maps
have a ‘center bias’ (Tatler, 2007; Judd et al., 2009). After
we control for this center bias in our human attention maps,
we find that the correlation of task-independent saliency
is poor (as expected), while trends for machine-generated
VQA-attention maps remain the same (which is promis-
ing).

2. Related Work
Our work draws on recent work in attention-based VQA
and human studies in saliency prediction. We work with the
free-form and open-ended VQA dataset released by (Antol
et al., 2015).

VQA Models. Attention-based models for VQA typically
use convolutional neural networks to highlight relevant re-
gions of image given a question. Stacked Attention Net-
works (SAN) proposed in (Yang et al., 2015) use LSTM
encodings of question words to produce a spatial atten-

tion distribution over the convolutional layer features of
the image. Hierarchical Co-Attention Network (Lu et al.,
2016) generates multiple levels of image attention based
on words, phrases and complete questions, and is the top
entry on the VQA Challenge2 as of the time of this submis-
sion. Another interesting approach uses question parsing to
compose the neural network from modules, attention being
one of the sub-tasks addressed by these modules (Andreas
et al., 2016).

Note that all these works are unsupervised attention mod-
els, where “attention” is simply an intermediate variable (a
spatial distribution) that is produced by the model to opti-
mize downstream loss (VQA cross-entropy). The fact that
some (it’s unclear how many) of these spatial distributions
end up being interpretable is simply fortuitous. In contrast,
we study where humans choose to look to answer visual
questions. These human attention maps can be used to eval-
uate unsupervised maps.

Human Studies. There’s a rich history of work in collect-
ing eye tracking data from human subjects to gain an un-
derstanding of image saliency and visual perception (Jiang
et al., 2014; Judd et al., 2009; Fei-Fei et al., 2007; Yarbus,
1967). Eye tracking data to study natural visual exploration
(Jiang et al., 2014; Judd et al., 2009) is useful but difficult
and expensive to collect on a large scale. (Jiang et al., 2015)
established mouse tracking as an accurate approach to col-
lecting attention maps. They collected large-scale attention
annotations for MS COCO (Lin et al., 2014) on Amazon
Mechanical Turk (AMT). While (Jiang et al., 2015) studies
natural exploration and collects task-independent human
annotations by asking subjects to freely move the mouse
cursor to anywhere they wanted to look on a blurred im-
age, our approach is task-driven.

Specifically, as described in 3, we collect ground truth at-
tention annotations by instructing subjects to sharpen parts
of a blurred image that are important for answering the
questions accurately. Section 4 covers evaluation of unsu-
pervised attention maps generated by VQA models against

2http://visualqa.org/challenge.html

http://visualqa.org/challenge.html


Human Attention in VQA: Do Humans and Deep Networks Look at the Same Regions?

(a) Initial blurred image (b) Regions sharpened by subject (c) Attention map

Figure 3. Deblurring procedure to collect attention maps. We present subjects with a blurred image and ask them to sharpen regions of
the image that will help them answer the question correctly, in a smooth, click-and-drag, ‘coloring’ motion with the mouse.

our human attention maps.

3. VQA-HAT (Human ATtention) Dataset
We design and test multiple game-inspired novel interfaces
for conducting large-scale human studies on AMT. Our ba-
sic interface design consists of a “deblurring” exercise for
answering visual questions. Specifically, we present sub-
jects with a blurred image and a question about the image,
and ask subjects to sharpen regions of the image that will
help them answer the question correctly, in a smooth, click-
and-drag, ‘coloring’ motion with the mouse. The sharpen-
ing is gradual: successively scrubbing the same region pro-
gressively sharpens it. Fig. 3 shows intermediate steps in
our attention annotation interface, from a completely blurry
image to a deblurred attention map.

3.1. Attention Annotation Interface

Our interface starts by showing a low-resolution blurry ver-
sion of the image. This is to convey a partial ‘holistic’ un-
derstanding of the scene to the subjects so they may intel-
ligently choose which regions to sharpen. Gradual sharp-
ening with strokes was aimed to capture initial exploration
as they tried to get a better sense of the scene, and even-
tually focussed sharpening to answer the question. Next
we describe the three variants of our attention annotation
interface that we experimented with.

3.1.1. BLURRED IMAGE WITHOUT ANSWER

In our first interface, subjects were shown a blurred image
and a question without the answer, and were asked to de-
blur regions and enter the answer. We found that this inter-
face sometimes resulted in ‘exploratory attention’, where
the subject lightly sharpens large regions of an image to
find salient regions that eventually lead them to the answer.
However, subjects often ended up with ‘incomplete’ atten-
tion maps since they did not see the high-resolution image
and the answer, so they did not know when to stop deblur-
ring or exploring. For instance, for an image with 3 players
playing a sport, if the question is “How many players are

visible in the image?”, the subject might sharpen a region
that seems to have the players, count the 2 players in there
and answer 2, and completely miss another region of the
image that had 1 more. The resulting attention map in this
case is incomplete since there are 3 players in the image.
This effect of incomplete human attention maps was seen in
counting (“How many ...”) and binary (“Is there ...”) types
of questions, and as a result, the answers to these were of-
ten incorrect.

3.1.2. BLURRED IMAGE WITH ANSWER

In our second interface, subjects were shown the correct
answer in addition to the question and blurred image. They
were asked to sharpen as few regions as possible such that
someone can answer the question just by looking at the
blurred image with sharpened regions. This interface is
shown in Fig. 4b. Providing the answer fixed the failure
cases from the 1st interface, i.e. for counting and binary
questions, since the subjects now knew the answer, they
continued to explore till they found the answer region in
the image.

3.1.3. BLURRED AND ORIGINAL IMAGE WITH ANSWER

To encourage exploitation instead of exploration, in our
third interface, subjects were shown the question-answer
pair and full-resolution original image. In principle, seeing
the original (full-resolution) image, the question, and an-
swer provides most information to subjects, thus enabling
them to provide the most ‘accurate’ attention maps. How-
ever, this task turns out to be fairly counter-intuitive – sub-
jects are shown full-resolution images and the answer, and
asked to imagine a scenario where someone else has to an-
swer the question without looking at the original image.

Fig. 4 shows screen-captures of the 3 attention annotation
interfaces.

3.2. Dataset Evaluation

We ran pilot studies on AMT to experiment with the above
described three interfaces. In order to quantitatively eval-
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(a) Blurred Image without Answer

(b) Blurred Image with Answer

(c) Blurred & Original Image with Answer

Figure 4. Attention annotation interface variants. (a) In our first interface, subjects were shown a blurred image and a question without
the answer, and were asked to deblur regions and enter the answer. (b) In our second interface, subjects were shown the correct answer
in addition to the question and blurred image. They were asked to sharpen as few regions as possible such that someone can answer the
question just by looking at the blurred image with sharpened regions. (c) To encourage exploitation instead of exploration, in our third
interface, subjects were shown the question-answer pair and full-resolution original image. Out of the three interfaces, Blurred Image
with Answer (b) struck the right balance between exploration and exploitation, and gives the highest accuracy on evaluation by humans
as described in section 3.2.
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uate the interfaces, we conducted a second human study
where (a second set of) subjects where shown the attention-
sharpened images generated from each of the attention in-
terfaces from the first experiment and asked to answer the
question. The intuition behind this experiment is that if
the attention map revealed too little information, this sec-
ond set of subjects would answer the question incorrectly.
Table 1 shows VQA accuracies of the answers given by
human subjects under these 3 interfaces. We can see that
the “Blurred Image with Answer” interface (section 3.1.2)
gives the highest accuracy on evaluation by humans.

Since the payments structure on AMT encourage complet-
ing tasks as quickly as possible, this implicitly incentivizes
subjects to deblur as few regions as possible, and our hu-
man study shows that humans can still answer questions.
Thus, overall we achieve a balance between highlighting
too little or too much.

Interface Type Human Accuracy

Blurred Image without Answer 75.2
Blurred Image with Answer 78.7

Blurred & Original Image with Answer 71.2
Original Image 80.0

Table 1. Human accuracies to compare the quality of human at-
tention maps collected by different interfaces. Subjects were
shown deblurred images from each of these interfaces and asked
to answer the visual question.

We collected human attention maps for 58475 train (out of
248349 total) and 1374 val (out of 121512 total) question-
image pairs in the VQA dataset. Overall, we conducted
approximately 20000 Human Intelligence Tasks (HITs) on
AMT, among 800 unique workers. Fig. 2 shows examples
of collected human attention maps. This VQA-HAT dataset
will be released publicly.

Figure 5. Visualization of 6 human attention map clusters – the
average attention map for the cluster and example questions
falling in each of them.

To visualize the collected dataset, we cluster the human at-
tention maps and visualize the average attention map and

example questions falling in each of them for 6 selected
clusters in Fig. 5.

4. Human Attention Maps vs Unsupervised
Attention Models

Now that we have collected these human attention maps,
we can ask the following question – do unsupervised atten-
tion models learn to predict attention maps that are simi-
lar to human attention maps? To rephrase, do neural net-

works look at the same regions as humans to answer a vi-

sual question?

VQA Attention Models. We evaluate maps generated by
the following unsupervised models:

• Stacked Attention Network (SAN) (Yang et al., 2015)
with two attention layers (SAN-2)3.

• Hierarchical Co-Attention Network (HieCoAtt) (Lu
et al., 2016) with word-level (HieCoAtt-W), phrase-
level (HieCoAtt-P) and question-level (HieCoAtt-Q)
attention maps; we evaluate all three maps4.

Comparison Metric: Rank Correlation. We first scale
both the machine-generated and human attention maps to
14x14, rank the pixels according to their spatial attention
and then compute correlation between these two ranked
lists. We choose an order-based metric so as to make the
evaluation invariant to absolute spatial probability values
which can be made peaky or diffuse by tweaking a ‘tem-
perature’ parameter.

Model Rank-correlation

SAN-2 (Yang et al., 2015) 0.249 ± 0.004

HieCoAtt-W (Lu et al., 2016) 0.246 ± 0.004
HieCoAtt-P (Lu et al., 2016) 0.256 ± 0.004
HieCoAtt-Q (Lu et al., 2016) 0.264 ± 0.004

Random 0.000 ± 0.001

Judd et al. (Judd et al., 2009) 0.497 ± 0.004

Human 0.623 ± 0.003

Table 2. Mean rank-correlation coefficients (higher is better); er-
ror bars show standard error of means. We can see that both SAN-
2 and HieCoAtt attention maps are positively correlated with hu-
man attention maps, but not as strongly as task-independent Judd
saliency maps.

Table 2 shows rank-order correlation averaged over all
image-question pairs on the validation set. We compare

3Code available at https://github.com/zcyang/
imageqa-san.

4Code available at https://github.com/jiasenlu/
HieCoAttenVQA

https://github.com/zcyang/imageqa-san
https://github.com/zcyang/imageqa-san
https://github.com/jiasenlu/HieCoAttenVQA
https://github.com/jiasenlu/HieCoAttenVQA
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Figure 6. Random samples of human attention (column 2) v/s machine-generated attention (columns 3-5).
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with random attention maps and task-independent saliency
maps generated by a model trained to predict human eye
fixation locations where subjects are asked to freely view
an image for 3 seconds (Judd et al., 2009). Both SAN-2 and
HieCoAtt attention maps are positively correlated with hu-
man attention maps, but not as strongly as task-independent
Judd saliency maps. Our findings lead to two take-away
messages with significant potential impact on future re-
search in this active field. First, current VQA attention
models do not seem to be ‘looking’ at the same regions
as humans to produce an answer. Second, as attention-
based VQA models become more accurate (58.9% SAN
! 62.1% HieCoAtt), they seem to be (slightly) better cor-
related with humans in terms of where they look. Our
dataset will allow for a more thorough validation of this
observation as future attention-based VQA models are
proposed. Fig. 6 shows examples of human attention
and machine-generated attention maps with corresponding
rank-correlation coefficients.

To put these numbers in perspective, we computed inter-
human agreement on the validation set by collecting 3
human attention maps per image-question pair and com-
puting mean rank-correlation, which is 0.623. Lastly, all
reported correlation values are averaged over 3 trials by
adding random noise (order of 10�14) to the human at-
tention maps to account for ranking variations in case of
uniformly weighted regions.

Center Bias. Judd saliency maps aim to predict human eye
fixations during natural visual exploration. These tend to
have a strong center bias (Tatler, 2007; Judd et al., 2009).
Although our human attention maps dataset is not an eye
tracking study, the center bias still exists albeit not as se-
vere. One potential source of this center bias is the fact that
the VQA dataset was human-generated by subjects look-
ing at the images. Thus, salient objects in the center of the
image are likely be potential subjects of the questions. We
compute rank-correlation of a synthetically generated cen-
tral attention map with Judd saliency and human attention
maps. Judd saliency maps have a mean rank-correlation
of 0.877 and human attention maps have a mean rank-
correlation of 0.458 on the validation set.

To eliminate the effect of center bias in this evaluation, we
removed human attention maps that have a positive rank-
correlation with the center attention map. We compute
rank-correlation of machine-generated attention with hu-
man attention on this reduced set. See Table 3. Mean corre-
lation goes down significantly for Judd saliency maps since
they have a strong center bias. Relative trends among SAN-
2 & HieCoAtt are similar to those over the whole validation
set (reported in Table 2). HieCoAtt-Q now has a higher
correlation with human attention maps than Judd saliency.
This demonstrates that discounting the center bias, VQA-

Model Rank-correlation

SAN-2 (Yang et al., 2015) 0.038 ± 0.011

HieCoAtt-W (Lu et al., 2016) 0.062 ± 0.012
HieCoAtt-P (Lu et al., 2016) 0.048 ± 0.010
HieCoAtt-Q (Lu et al., 2016) 0.114 ± 0.012

Judd et al. (Judd et al., 2009) -0.063 ± 0.009

Table 3. Mean rank-correlation coefficients (higher is better) on
the reduced set without center bias; error bars show standard error
of means. We can see that correlation goes down significantly for
Judd saliency maps since they have a strong center bias. Relative
trends among SAN-2 & HieCoAtt are similar to those over the
whole validation set (reported in Table 2).

specific machine attention maps correlate better with VQA-
specific human attention maps than task independent ma-
chine saliency maps.

5. Conclusion & Discussion
We introduce and release the VQA-HAT dataset. This
dataset can be used to evaluate attention maps generated in
an unsupervised manner by attention-based VQA models,
or to explicitly train models with attention supervision for
VQA. We quantify whether current attention-based VQA
models are ‘looking’ at the same regions of the image as
humans do to produce an answer.

Necessary vs Sufficient Maps. Are human attention maps
‘necessary’ and/or ‘sufficient’? If regions highlighted by
the human attention maps are sufficient to answer the ques-
tion accurately, then so is any region that is a superset. For
example, if attention mass is concentrated on a ‘cat’ for
‘What animal is present in the picture?’, then an attention
map that assigns weights to any arbitrary-sized region that
includes the ‘cat’ is sufficient as well. On the contrary, a
necessary and sufficient attention map would be the small-
est visual region sufficient for answering the question ac-
curately. It is an ill-posed problem to define a necessary
attention map in the space of pixels; random pixels can be
blacked out and chances are that humans would still be able
to answer the question given the resulting subset attention
map. Our work thus poses an interesting question for fu-
ture work – what is the right semantic space in which it is
meaningful to talk about necessary and sufficient attention
maps for humans?
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