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Abstract
In this paper, we introduce a visual analysis sys-
tem called CNNVis, which aims to facilitate ex-
perts in better understanding and refining deep
convolutional neural networks (CNNs). Given
a trained CNN, CNNVis first extracts the de-
rived features of neurons and connections be-
tween neurons. In addition, CNNVis aggregates
the network to effectively visualize a large CNN.
To help experts analyze deep models, CNNVis
employs a hybrid visualization to visualize mul-
tiple facets of neurons and the connections be-
tween them. To demonstrate the effectiveness
and usefulness of our system, we have conducted
two case studies on two benchmark datasets.

1. Introduction
Deep convolutional neural networks (CNNs) have brought
major breakthroughs in processing images (Krizhevsky
et al., 2012; Szegedy et al., 2015), video (Karpathy et al.,
2014), and speech (Sainath et al., 2013). In spite of the
encouraging success of deep CNNs, the understanding of
their inner working mechanism of them is limited. As a re-
sult, constructing high quality deep models is often reduced
to substantial trial-and-error (Bengio, 2009; Bengio et al.,
2013; Yosinski et al., 2015).

Recently, researchers have worked towards a better under-
standing of deep CNNs. The effort has mainly focused on
calculating and visualizing the learned features of neurons
for the task of image classification (Mahendran & Vedaldi,
2015; Simonyan et al., 2013; Yosinski et al., 2015; Zeiler
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& Fergus, 2014). In these methods, the learned features
are represented by image patches or synthesized images.
These methods can reveal what a deep CNN learns at dif-
ferent stages of computation. However, they fail to disclose
the inner working mechanisms of CNNs, including the role
of each neuron for different classes of images and the inter-
actions between neurons.

To solve this problem, we are introducing a visual
analysis system, CNNVis (Mengchen et al., 2016), to
reveal the multiple facets of neurons and the con-
nections between neurons. A demo video is avail-
able at http://shixialiu.com/publications/cnnvis/CNNVis-
icml.mp4. With CNNVis, experts can explore a deep CNN
from different perspectives, such as the learned features or
the activations of neurons. In addition, it enables experts to
examine the interactions between different neurons. In this
paper, we illustrate the major components of CNNVis. We
also present two case studies that demonstrate the promise
of our system to understand and refine deep CNNs.

2. System Overview
Here, we provide an overview of CNNVis, starting with its
user interface, followed by its system architecture.

2.1. User Interface

Fig. 1 depicts the user interface of CNNVis. It contains
two different interactive areas: the CNNVis visualization
and the control panel. The visualization view consists of
two parts:

• A visualization to reveal the multiple facets of neurons
and the connections between neurons (Fig. 1 (a));

• A line chart that shows an overview of the debugging
information such as the average gradient of each layer
(Fig. 1 (b)).
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Figure 1. CNNVis user interface: (a) hybrid visualization; (b) line
chart to show debugging information; (c) control panel.

The control panel (Fig. 1 (c)) contains a set of controls that
enables experts to interactively customize the visualization
such as changing the color coding of edges and filtering out
unimportant edges.

2.2. System Architecture
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Figure 2. CNNVis system pipeline.

As shown in Fig. 2, CNNVis contains the following com-
ponents:

• A preprocessing module that converts a CNN into a di-
rected acyclic graph (DAG) and computes the derived
features of neurons and connections between neurons;

• A data aggregation module that aggregates the layers,
neurons, and the connections between neurons;

• A visualization module that shows multiple facets of
neurons and the connections between neurons.

To use CNNVis, experts first need to load a trained CNN

and the corresponding training set. As a CNN has no feed-
back loop, it can be formulated as a DAG. Based on this
formulation, CNNVis then computes the derived features
of neurons and the connections between neurons. The DAG
and the derived features are then fed into the data aggrega-
tion module. Based on the derived features, the data aggre-
gation module aggregates the DAG to effectively visualize
a large CNN. It aggregates the layers, neurons, and connec-
tion between neurons. Experts can interactively modify the
aggregation results according to their domain knowledge.
The visualization module takes the derived features and ag-
gregation results as input and visually illustrates them in a
hybrid visualization. Experts can interact with the gener-
ated visualization for further analysis.

3. Data Processing
In this section, we introduce the data processing of CN-
NVis, which includes preprocessing and data aggregation.

3.1. Preprocessing

The processing module first converts the input CNN into
a DAG, where each neuron is represented by a node and
the connection between neurons are formulated as an edge.
Then this module computes the derived features of neurons
and the connections between them.

Neurons. To compute the derived features of neurons, we
first run each image in the training set through the network.
In this way, we compute the activations of neurons. Ac-
cording to these activations, we compute the learned fea-
tures of the neurons by the method used in (Girshick et al.,
2014). We also compute the importance of each neuron.
In CNNVis, the importance can be defined in several ways,
such as the average or maximal activation on a set of classes
of images and the contribution to the final result.

Connections between Neurons. The connections between
neurons can reveal how low-level features are aggregated
into high-level features. Their strengths are often learned
by minimizing the value of the loss function, which is
solved by stochastic gradient descent (Bottou, 1991). For
a given snapshot, we can get the strengths and gradients
by parsing the model file (e.g, “.caffemodel” file for Caffe
framework).

3.2. Data Aggregation

To effectively visualize a large CNN, we perform a series of
data aggregation operations. We first cluster the layers and
select a representative layer from each layer cluster. We
then cluster the neurons in the representative layers. Sev-
eral representative neurons are selected from each neuron
cluster. To reduce the visual clutter caused by a large num-
ber of connections between neurons, we bundle the con-
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nections via biclustering (Sun et al., 2016). A bicluster is a
subset of input neuron clusters and a subset of output neu-
ron clusters.

4. Visualization
In this section, we introduce the visualization module of
CNNVis.

(a) (b)
Figure 3. Switching between two facets of a neuron cluster.

4.1. Overview of the Visual Design

In CNNVis, each neuron cluster is represented by a large
rectangle. Experts can analyze neuron clusters from mul-
tiple facets, such as the learned features, activations, and
contributions to the final result. The learned features of
neurons are placed using a rectangle packing algorithm
(Fig. 3 (a)). The activations of neurons in a cluster are
shown as a matrix visualization (Fig. 3 (b)). Each cell in
the matrix represents the average activation of a neuron on a
class of images. The importance of a neuron is encoded by
the size of the rectangle. The connections between neurons
are represented by curves connecting two neurons. Please
refer to (Mengchen et al., 2016) for more details on how to
generate such a visualization

4.2. Interaction

To enable experts to further analyze their models, we pro-
vide a set of interactions.

Interactive Data Aggregation. As the data aggregation
method can be imperfect and different users may have dif-
ferent needs, we allow experts to interactively modify the
aggregation results. For example, experts can drag a neu-
ron to another neuron cluster to modify the neuron cluster-
ing results. In addition, experts can manually merge two
biclusters.

Exploring Multiple Facets of Neurons. Previous research
has focused on visualizing the learned features of neurons.
However, other facets of neurons can also help experts an-
alyze the roles of neurons from different perspectives. For
example, the activations of neurons can help experts find
important neurons for classifying a specific class of images.
Thus, we allow experts to switch among different facets.
For example, experts can switch to view the activations or
the learned features of neurons.

Analyzing a Part of the Neurons. A large CNN may have

thousands of neurons in each layer. Thus, it is desirable
to allow experts to select a portion of the neurons to an-
alyze. In particular, we allow experts to expand a layer
cluster to analyze the neurons in these layers. In addition,
we also allow experts to select a set of classes and show the
neurons that are strongly activated by the images in those
classes. Other neurons are deemphasized by setting them
to be translucent.

Examining the Debugging Information. Analyzing the
debugging information is a common way for experts to di-
agnose a failed training process. As there is often a huge
amount of debugging information, we allow experts to ex-
plore the debugging information at different levels of gran-
ularity. For example, experts can change the color coding
of edges to examine the gradients of weights. In addition,
CNNVis shows the aggregated gradients of each layer as a
line chart below. Other derived values such as the relative
change of weights can be illustrated in the same way.

5. Case Studies
In this section, we demonstrate the effectiveness and use-
fulness of CNNVis using two real-world case studies.
These two case studies are in conjunction with two domain
experts (E1 and E2).

5.1. Analyzing Influence of Network Architecture

This case study demonstrates how CNNVis helps a deep
learning expert (E1) better understand the influence of net-
work architecture, including the network depth and width.

The expert employed LeNet (Lecun et al., 1998) as the
baseline model. He used the MNIST (Lecun et al., 1998)
dataset to train and test the network. He adopted the im-
plementation of LeNet in Caffe (Jia et al., 2014), where the
network has 2 convolutional layers and 2 fully connected
layers. The model achieved 0.87% error on the test set.
In this case study, E1 evaluated a set of variants of LeNet
(with different depths and widths) qualitatively based on
his experience.

The expert first examined how the depth of the model influ-
enced the performance and checked the possibility of CN-
NVis to help him decide an appropriate network depth.

To investigate the performance of deeper models, he re-
placed each convolutional layer with a stack of 4 convolu-
tional layers. He adopted ReLU as the activation function.
The new model was named with DeepLeNet. The com-
parison between DeepLeNet and LeNet is summarized in
Table 1. To investigate why DeepLeNet has a worse perfor-
mance, E1 first examined the weights of the first and sec-
ond group of the convolutional layers. He instantly found
that most of the weights in the first group of convolutional
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layers were positive (Fig. 4 (a)). This was different from
LeNet (Fig. 4 (b)).

The expert commented that consecutive convolutional lay-
ers whose weights are mostly positive can be approximated
with a close-to-linear function. This phenomenon indicated
redundancy in the layers. He concluded that such redun-
dancy may make the training process less effective and hurt
the performance.

Table 1. Comparison between LeNet and DeepLeNet.
“#ConvLayers” is the number of convolutional layers.

Error #ConvLayers
LeNet 0.87% 2

DeepLeNet 1.00% 8

(a) (b)

Figure 4. The comparison between LeNet and DeepLeNet: (a) the
weights of the first group of convolutional layers in DeepLeNet;
(b) the weights of the first convolutional layer in LeNet.

The width of a CNN is another important factor that influ-
ences the performance. To evaluate the influence of width
comprehensively, the expert compared several variants of
LeNet with different widths. The variants are named by
LeNet×w, where w is the ratio of the number of neurons
in the convolutional layers compared to that of LeNet. For
example, LeNet×4 has four times the neurons of LeNet. In
this case study, w was selected from {4, 2, 0.5, 0.25}. The
architecture and performance of these variants and LeNet
are summarized in Table 2.

Table 2. Comparison between CNNs with different widths.
Error Training loss Testing loss

LeNet×4 0.87% 5.93×10−3 2.55×10−2

LeNet×2 0.86% 6.17×10−3 2.59×10−2

LeNet 0.87% 6.25×10−3 2.78×10−2

LeNet×0.5 1.16% 9.80×10−3 3.41×10−2

LeNet×0.25 1.36% 1.89×10−2 4.60×10−2

Expert E1 observed that the performance of a wider model
(LeNet×4) is comparable with that of LeNet. From the
training loss and testing loss, he could not conclude that
the wider model is more overfitting than the baseline model
(LeNet), quantitatively. Thus, he wanted to qualitatively

A

B

C

Figure 5. Neurons in a model that is too wide. Many neurons in
the first convolutional layer have very similar activations.

examine LeNet×4. From the activations of the neurons
in the first convolutional layer, he instantly observed that
many neurons have very similar activations (A, B, and C
in Fig. 5). The expert inferred that there may be redundant
neurons in a model that is too wide. The expert further
commented, “CNNVis can help me qualitatively evaluate
the quality of a model. It provides a good complement for
the quantitative criterion that we often use.”

5.2. Interactive Model Refinement

Table 3. Performance comparison between ReLU (BaseCNN)
and leaky ReLU with different parameters. “\.” indicates that
the parameter leads to a failed training process. “err” is short for
error and the column that the value of the parameter is zero is the
baseline.

0 0.01 0.05 0.1 0.15 0.2 0.24 0.25 0.3
err(%) 11.45 11.12 10.78 10.35 10.07 10.18 10.11 \ \
std(%) 0.33 0.19 0.23 0.12 0.09 0.16 0.10 \ \

This case study aims to demonstrate how CNNVis facil-
itates machine learning experts in refining a CNN. Re-
cently, expert E2 wanted to construct a model to clas-
sify the images in CIFAR-10 dataset. Inspired by VGG
nets (Simonyan & Zisserman, 2014), he designed a model
with 10 convolutional layers and 2 fully connected lay-
ers (BaseCNN). The convolutional layers can be organized
into 4 groups, containing 2, 2, 3, and 3 convolutional lay-
ers, respectively. The number of the neurons of the con-
volutional layer in each group is 96, 128, 256, and 512,
respectively. Each group of convolutional layers ends with
a max-pooling layer. This model achieved 11.32% error
rate on the test set.

He was not satisfied with the model accuracy and wanted
to improve the model. To find a potential direction for im-
provement, he examined the average relative change of the
weights from the first layer to the last layer (Fig. 6A). In
the corresponding line chart, the expert immediately iden-
tified a large change in the third group of convolutional lay-
ers (Fig. 6B). He pointed to this drop and said, “In a high
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Figure 6. Network refinement. (a) the overview of BaseCNN; (b) Expanding the third group of convolutional layers.

HeatMap

HeatMap

conv3-3 relu33relu32

(a)

A

B

(b)

ReLU Leaky ReLU

x

y

0y =

y

x

Figure 7. Illustration of activations: (a) the neurons with zero ac-
tivations in layers relu3-2 and relu3-3 (output of corresponding
convolutional layers); (b) illustration of ReLU and leaky ReLU.

quality CNN, the average relative change typically does not
behave this way.”

To figure out the potential reason for this change, he
zoomed into the third group of convolutional layers
(Fig. 6C) to examine it in more detail, focusing on explor-
ing the learned features in each layer. His examination re-
vealed that the learned features in these layers (Fig. 6(b))
were mostly parts of an object and had a clear meaning
(e.g., an animal’s face or a horse’s head). He found two
neuron clusters had no connections with other neuron clus-
ters (D1, and D2 in Fig. 6). Thus, he switched to ex-
amine the activations of these neuron clusters (Fig. 7(a)).
Some neurons with zero activations (inactive neurons) on
all classes attracted his attention (A, and B in Fig. 7(a)).
He further examined the inputs of the ReLUs in these neu-
rons by expanding the layer cluster. He found that the in-
puts of these ReLUs were always less than zero. The expert
pointed out that if the input of an ReLU is less than zero,
it generates a zero activation (Fig. 7(b)). The neurons with
zero activations make no contributions to the training pro-
cess. Thus, it makes it more difficult to converge the model.

To solve this problem, E2 proposed using leaky
ReLU (Maas et al., 2013) to replace ReLU as the activa-
tion function. E2 further commented that they usually start
from ReLU for a task at hand due to its acceptable per-
formance in most cases. Although Leaky ReLU allows
small non-zero gradients when the neuron activity is less
than zero (Fig. 7(b)), it is parameter sensitive (Maas et al.,
2013). Experts have to try different parameters to find an
acceptable performance, which is very time consuming. As
a result, leaky ReLU is seldom used in the trial stage. If
there are inactive neurons for all the data, it is preferable to
try leaky ReLU.

To verify his assumption, E2 tried leaky ReLU with 8 dif-
ferent parameters ranging from 0.01 to 0.3. To eliminate
the randomness in the initialization, we trained each model
five times with different random seeds and reported the
mean and standard deviation. The performance compari-
son with BaseCNN is summarized in Table 3. The model
with leaky ReLU performed better with most parameters.
However, several parameters lead to failed training process
(0.25, 0.3).

This case study demonstrates the ability of CNNVis to
help experts find the potential limitations of a CNN model,
which are hard to find without an interactive visualization
toolkit. The finding can further inspire possible directions
for improving the network architecture of CNNs. For ex-
ample, expert E2 commented, “Unlike an aimless trial-and-
error process, this toolkit helps me easily find a potential
direction for improvement. This definitely accelerates the
model construction process in my research.”
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6. Implementation Notes
CNNVis was implemented with C++ and C #. The pre-
processing module was implemented in C++ based on the
Caffe framework (Jia et al., 2014). We leveraged the Caffe
framework to run the data through the network and get the
activations of neurons. The data aggregation module, user
interface, and visualizations are implemented in C#. The
images are processed by EmguCV (Korn, 2015), which is
a cross platform .Net wrapper to the OpenCV image pro-
cessing library. We adopted WPF framework to implement
the user interface and visualizations.

Currently, we are trying to convert it to an online version
with Javascript. Our online version is based on D3 (Bo-
stock et al., 2011), which is a commonly used JavaScript
visualization library.

7. Conclusions
We have introduced CNNVis, a visual analysis system that
can help experts better understand and refine deep CNNs.
The major feature of CNNVis is that it provides experts an
interactive visualization to analyze the model from differ-
ent perspectives. Two real-world case studies have illus-
trated the effectiveness and usefulness of our system.
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