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Abstract 

In this work in progress paper, we apply recurrent neural 
networks and t-distributed stochastic neighbor embedding (t-sne) 
towards discovery of latent modes of behavior among a sample of 
learners using the online learning platform Khan Academy. We 
explore how the temporal sequence of correctness of problem 
attempts on various exercises in the platform is abstracted by the 
hidden layer and how the students’ hidden layer state transitions 
over time. We compare visualizations of several off the shelf 
variants of t-SNE and provide an animation of the hidden state 
transition over time.  
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1. INTRODUCTION 
The richness and scale of learner event action logs from digital 
learning environments like Khan Academy1 provides an 
opportunity to discover patterns of behavior that can inform 
instruction and shed light on previously unrecognized cognitive 
knowledge states and transitions. Our goal in this paper was to 
train a predictive model of student performance and then visually 
interrogate the model for its representation of the student. The 
predictive model utilizes recurrent neural networks (RNN), a 
special class of artificial neural networks particularly well suited 
for temporal data. The training data were the sequential problem 
logs of student, correctness, exercise tuples from Khan Academy 
users. We visualized the model’s hidden state representation at 
each time slice for each student by reducing its dimensionality 
down to two using t-Distributed Stochastic Neighbor Embedding 
(t-SNE), and then creating an animation (with interpolation) of 
the first 100 time slices for each learner. We provide still and 
animated visualizations of our pilot model and point to areas for 
improvement.    

2. Methodology 
2.1 Dataset 
Our original dataset was a sample of learner problem logs from 
Khan Academy and consisted of 1,044,929 student attempts to 
answer a problem in the tutoring system, mostly consisting of 
dichotomously scoreable multiple-choice or short answer 

                                                                 

 
1 http://www.khanacademy.org 

questions on arithmetic, geometry, or algebra. The events in the 
dataset were grouped by learner and ordered chronologically 
within the group and included the following features per event: 
anonymized learner id, timestamp, time taken, exercise name, 
hints used, and Boolean correctness of the answer attempt.  

2.1.1 Pre-processing 
Since we were interested in looking at our model’s hidden state 
representation of learners over tim,e we choose to filter out users 
who had logged fewer than 100 problem attempts. For the training 
of the model we used only the first 100 problem attempts. While 
many features exist for extended modeling of student behavior, 
for this pilot analysis we kept only information about the learner 
ID, chronology, correctness, and exercise name associated with 
the problem attempt. 

The final post-processed training dataset contained a feature 
vector for each of the 100 time slices (problem attempts) for each 
of the 1,516 unique students. Each vector had a one-hot encoding 
of the correctness of the previous problem attempt and a one-hot 
encoding of the current exercise name, of which there were 750 in 
our post-processed training set.  

2.2 LSTM Model and Experiments 
We chose to use the Long Short-Term Memory variant of 
Recurrent Neural Networks because of its strength in addressing 
the vanishing gradient. In our data, a learner’s performance on an 
exercise at the beginning of their sequence may have bearing on a 
particular exercise seen much later in their sequence. LSTMs are 
superior to RNNs in retaining relevant information from far back 
in a sequence of input data. The input to the model at each time 
slice was our feature vector of previous correctness and exercise. 
The output of the model at each time slice was the correctness of 
the current attempt and the next exercise. This representation has 
the model trying to predict both performance but also what 
exercise the learner will choose to interact with next. Future work 
will be to adopt the knowledge tracing representation used in [4]. 

We ran a limited hyper parameter search with 1 or 2 layers LSTM 
models with a 10 or 100 batch size, and 50, 128 or 256 hidden 
nodes. All of these experiments were conducted using Keras’ 
implementation of LSTMs and trained to 10 epochs. The best 
combination in terms of the 10% validation set prediction 
accuracy was the 1 layer LSTM with batch size of 100 and 128 
hidden nodes, in which 54.39% of the predictions accurately 
predicted both correctness and next exercise.  



2.3 T-SNE Dimensionality Reduction  
We chose to use the t-SNE framework for our dimensionality 
reduction because of its recent success in the Merck Visualization 
Challenge2 and its common paired with high dimensionality 
datasets and deep learning. We first extracted the hidden states 
(100) from our LSTM model for each learner in our post-
processed dataset We then used these hidden states to run three 
different T-SNE models. Each hidden state was treated as an 
independent instance but were later re-grouped by student when 
rendering the animation. The three implementations of t-SNE 
utilized were (1) Barnes-Hut (2) standard python implementation 
from Laurens van der Maaten, and (3) Barnes-Hut for Scikit-
Learn. Barnes-Hut is a variant of t-SNE which is significantly 
faster [1]. The three implementation completed training in 
20h14m, 37m, and 28m respectively. 

Each of the three models have different significant hyper 
parameters and one parameter, perplexity, which they all share in 
common. Perplexity is related to the number of nearest neighbors 
used in manifold learning algorithms. Maaten asserts that the most 
appropriate number depends on the density of the dataset and 
should be somewhere between 0 and 50. For our current models, 
we use a value of 30. Larger datasets typically require larger 
perplexities [2]. In addition to perplexity, the standard python 
implementation from Maaten utilizes an initial dimensions 
parameter that reduces the input dataset to the specified number 
using PCA. The Barnes-Hut implementation from Maaten utilizes 
a third key hyper parameter, theta, along with perplexity and 
initial dimensions. Theta is specific to Barnes-Hut 
implementations and determines how fine or course the 
approximations is. Values close to 1.0 will be faster, while values 
close to 0 will be more exact.  

2.4 Visualization and Animation 
We visualized our two-dimensional output by plotting each of the 
100 time steps of the 1,516 students in a scatterplot using 
matplotlib. We then created an animation3 by joining each of 
these time steps along with interpolation frames to allow 
transitions to be followed. Students that have large differences in 
their time steps will travel faster while students with small 
differences will travel slower. In several time steps, some learners 
maintain their position and do not move at all, perhaps due to 
repeated responses to the same exercise. We used Holoviews and 
BokehJS to create an interactive animation inside Jupyter 
Notebook that allows for scrubbing and hovering over specific 
points. The code written for these visualizations is available on 
github4. 

3. Future Work 
We have just scratched the surfgace in terms of utilizing 
visualization to broaden our understanding of human cognition 
and behavior. There is room for improvement on the modeling 
front; additional features can be added to the model, such as time 
taken to respond and educational video viewing behavior, which 
can potentially improve the discrimination of the model. 
Additionally, we can utilize a different representation for the 
targets such that the model predicts performance on all exercises, 
                                                                 
2 https://www.kaggle.com/c/MerckActivity/prospector#186 
3 https://www.youtube.com/watch?v=eCCJ54rAEFY 
4 https://github.com/CAHLR/khan_visualization 

as was done in [4], instead of the target inclduing the next 
exercise. Student behavior can be studied at a macro level, 
watching students’ transitions through all of the material. On a 
micro level, within exercise transitions can be observed that may 
be indicative different stages of cognitive mastery. Most 
immediately, we wish to develop the tools that will allow us to 
link plotted data points to their raw data so that the semantics of 
the space and the rationale for transitions can be investigated. 
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Figure 1. Python Model, Barnes-Hut (SKL), and Barnes-
Hut (LM) produced plots from left to right, top to bottom. 


