
Christopher Vu Le

University of California, Berkeley, USA
Electrical Engineering and Computer Science

Zachary A. Pardos

University of California, Berkeley, USA
School of Information & Graduate School of Education

CHRISVLE@BERKELEY.EDU

ZP@BERKELEY.EDU

Visualizing Online Learner Patterns

Abstract

In this work in progress paper, we apply recurrent neural
networks and t-distributed stochastic neighbor embedding (t-sne)
towards discovery of latent modes of behavior among a sample of
learners using the online learning platform Khan Academy. We
explore how the temporal sequence of correctness of problem
attempts on various exercises in the platform is abstracted by the
hidden layer and how the students’ hidden layer state transitions
over time. We compare visualizations of several off the shelf
variants of t-SNE and provide an animation of the hidden state
transition over time.

Keywords

Education, RNN, LSTM, Neural Networks, T-SNE, Visualization

1. INTRODUCTION
The richness and scale of learner event action logs from digital
learning environments like Khan Academy1 provides an
opportunity to discover patterns of behavior that can inform
instruction and shed light on previously unrecognized cognitive
knowledge states and transitions. Our goal in this paper was to
train a predictive model of student performance and then visually
interrogate the model for its representation of the student. The
predictive model utilizes recurrent neural networks (RNN), a
special class of artificial neural networks particularly well suited
for temporal data. The training data were the sequential problem
logs of student, correctness, exercise tuples from Khan Academy
users. We visualized the model’s hidden state representation at
each time slice for each student by reducing its dimensionality
down to two using t-Distributed Stochastic Neighbor Embedding
(t-SNE), and then creating an animation (with interpolation) of
the first 100 time slices for each learner. We provide still and
animated visualizations of our pilot model and point to areas for
improvement.

2. Methodology
2.1 Dataset
Our original dataset was a sample of learner problem logs from
Khan Academy and consisted of 1,044,929 student attempts to
answer a problem in the tutoring system, mostly consisting of
dichotomously scoreable multiple-choice or short answer

1 http://www.khanacademy.org

questions on arithmetic, geometry, or algebra. The events in the
dataset were grouped by learner and ordered chronologically
within the group and included the following features per event:
anonymized learner id, timestamp, time taken, exercise name,
hints used, and Boolean correctness of the answer attempt.

2.1.1 Pre-processing
Since we were interested in looking at our model’s hidden state
representation of learners over tim,e we choose to filter out users
who had logged fewer than 100 problem attempts. For the training
of the model we used only the first 100 problem attempts. While
many features exist for extended modeling of student behavior,
for this pilot analysis we kept only information about the learner
ID, chronology, correctness, and exercise name associated with
the problem attempt.

The final post-processed training dataset contained a feature
vector for each of the 100 time slices (problem attempts) for each
of the 1,516 unique students. Each vector had a one-hot encoding
of the correctness of the previous problem attempt and a one-hot
encoding of the current exercise name, of which there were 750 in
our post-processed training set.

2.2 LSTM Model and Experiments
We chose to use the Long Short-Term Memory variant of
Recurrent Neural Networks because of its strength in addressing
the vanishing gradient. In our data, a learner’s performance on an
exercise at the beginning of their sequence may have bearing on a
particular exercise seen much later in their sequence. LSTMs are
superior to RNNs in retaining relevant information from far back
in a sequence of input data. The input to the model at each time
slice was our feature vector of previous correctness and exercise.
The output of the model at each time slice was the correctness of
the current attempt and the next exercise. This representation has
the model trying to predict both performance but also what
exercise the learner will choose to interact with next. Future work
will be to adopt the knowledge tracing representation used in [4].

We ran a limited hyper parameter search with 1 or 2 layers LSTM
models with a 10 or 100 batch size, and 50, 128 or 256 hidden
nodes. All of these experiments were conducted using Keras’
implementation of LSTMs and trained to 10 epochs. The best
combination in terms of the 10% validation set prediction
accuracy was the 1 layer LSTM with batch size of 100 and 128
hidden nodes, in which 54.39% of the predictions accurately
predicted both correctness and next exercise.

2.3 T-SNE Dimensionality Reduction
We chose to use the t-SNE framework for our dimensionality
reduction because of its recent success in the Merck Visualization
Challenge2 and its common paired with high dimensionality
datasets and deep learning. We first extracted the hidden states
(100) from our LSTM model for each learner in our post-
processed dataset We then used these hidden states to run three
different T-SNE models. Each hidden state was treated as an
independent instance but were later re-grouped by student when
rendering the animation. The three implementations of t-SNE
utilized were (1) Barnes-Hut (2) standard python implementation
from Laurens van der Maaten, and (3) Barnes-Hut for Scikit-
Learn. Barnes-Hut is a variant of t-SNE which is significantly
faster [1]. The three implementation completed training in
20h14m, 37m, and 28m respectively.

Each of the three models have different significant hyper
parameters and one parameter, perplexity, which they all share in
common. Perplexity is related to the number of nearest neighbors
used in manifold learning algorithms. Maaten asserts that the most
appropriate number depends on the density of the dataset and
should be somewhere between 0 and 50. For our current models,
we use a value of 30. Larger datasets typically require larger
perplexities [2]. In addition to perplexity, the standard python
implementation from Maaten utilizes an initial dimensions
parameter that reduces the input dataset to the specified number
using PCA. The Barnes-Hut implementation from Maaten utilizes
a third key hyper parameter, theta, along with perplexity and
initial dimensions. Theta is specific to Barnes-Hut
implementations and determines how fine or course the
approximations is. Values close to 1.0 will be faster, while values
close to 0 will be more exact.

2.4 Visualization and Animation
We visualized our two-dimensional output by plotting each of the
100 time steps of the 1,516 students in a scatterplot using
matplotlib. We then created an animation3 by joining each of
these time steps along with interpolation frames to allow
transitions to be followed. Students that have large differences in
their time steps will travel faster while students with small
differences will travel slower. In several time steps, some learners
maintain their position and do not move at all, perhaps due to
repeated responses to the same exercise. We used Holoviews and
BokehJS to create an interactive animation inside Jupyter
Notebook that allows for scrubbing and hovering over specific
points. The code written for these visualizations is available on
github4.

3. Future Work
We have just scratched the surfgace in terms of utilizing
visualization to broaden our understanding of human cognition
and behavior. There is room for improvement on the modeling
front; additional features can be added to the model, such as time
taken to respond and educational video viewing behavior, which
can potentially improve the discrimination of the model.
Additionally, we can utilize a different representation for the
targets such that the model predicts performance on all exercises,

2 https://www.kaggle.com/c/MerckActivity/prospector#186
3 https://www.youtube.com/watch?v=eCCJ54rAEFY
4 https://github.com/CAHLR/khan_visualization

as was done in [4], instead of the target inclduing the next
exercise. Student behavior can be studied at a macro level,
watching students’ transitions through all of the material. On a
micro level, within exercise transitions can be observed that may
be indicative different stages of cognitive mastery. Most
immediately, we wish to develop the tools that will allow us to
link plotted data points to their raw data so that the semantics of
the space and the rationale for transitions can be investigated.

4. ACKNOWLEDGMENTS
We would like to thank Khan Academy for their collaboration in
providing a sample of de-identified student data to us for research
purposes and to NSF for supporting the student author under
BIGDATA Award #1547055.

5. REFERENCES
[1] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based

Algorithms. Journal of Machine Learning Research
15(Oct):3221-3245, 2014.

[2] L.J.P. van der Maaten and G.E. Hinton. Visualizing High-
Dimensional Data Using t-SNE. Journal of Machine
Learning Research 9(Nov):2579-2605, 2008.

[3] L.J.P. van der Maaten. Learning a Parametric Embedding by
Preserving Local Structure. In Proceedings of the Twelfth
International Conference on Artificial Intelligence &
Statistics (AI-STATS), JMLR W&CP 5:384-391, 2009.

[4] Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M.,
Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep Knowledge
Tracing. Proceedings of the 29th Conference on Neural
Information Processing Systems, Montreal, Canada (pp.
505-513).

Figure 1. Python Model, Barnes-Hut (SKL), and Barnes-
Hut (LM) produced plots from left to right, top to bottom.

