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Abstract

Deep neural networks have shown striking
progress and obtained state-of-the-art results in
many Al research fields in the recent years. It is
often unsatisfying to not know why they predict
what they do. In this paper, we address the prob-
lem of interpreting Visual Question Answering
(VQA) models. Specifically, we are interested in
finding what part of the input (pixels in images
or words in questions) the VQA model focuses
on while answering the question. To tackle this
problem, we use two visualization techniques —
guided backpropagation and occlusion — to find
important words in the question and important
regions in the image. We then present quali-
tative and quantitative analyses of these impor-
tance maps.

1. Introduction

We are witnessing an excitement in the research commu-
nity and frenzy in media regarding advances in Al. Fueled
by a combination of massive datasets and advances in deep
neural networks (DNNs), the community has made remark-
able progress on a variety of Al tasks such as image classi-
fication (Szegedy et al., 2015), machine translation (Brea
et al., 2011; Sutskever et al., 2014), speech recognition
(Hinton et al., 2012), and even harder tasks such as learning
to play Go (Mnih et al., 2013), answering reading compre-
hension questions by understanding short stories (Bordes
et al., 2015; Weston et al., 2015), and answering questions
about images (Antol et al., 2015; Ren et al., 2015; Mali-
nowski et al., 2015).

Unfortunately, when today’s machine perception and intel-
ligent systems fail, they fail in a spectacularly disgraceful
manner, without warning or explanation, leaving the user
staring at an incoherent output, wondering why the system
did what it did.
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Question : Is this a whole orange?
Predicted Answer : no \

Machine:
Evidence/Support
from Input Question

Question :

IS this a [WRGIE] orange [2

Figure 1. The goal of this work is to interpret Visual Question An-
swering models. We are interested in answering the question—
why does a VQA model predict what it does? Our approach here
is to find the evidence in the test input on which the model fo-
cuses while answering the question. In this example, “whole” is
the most important word in the question for the model while pre-
dicting the answer “no”.

In this work, we focus on Visual Question Answering,
where the task is — given an image and a free-form natural
language question about the image, (e.g., “What color are
the girl’s shoes?”, or “Is the boy jumping?”), the machine
has to produce a natural language answer as its output (e.g.
“blue”, or “yes”). Specifically, we try to interpret a recent
state-of-art VQA model (Lu et al., 2015) trained on recently
released VQA (Antol et al., 2015) dataset. This VQA
model uses Convolutional Neural Network (CNN) features
for images and Long-Short Term Memory (LSTM) embed-
dings for questions, combines these embeddings, and uses
a multi-layer perceptron as a classifier to predict a proba-
bility distribution over answers.

Sustained interactions with the system make it clear that the
system has a non-trivial level of intelligence (e.g., it is able
to recognize people, objects, efc. in the image). However, it
is deeply unsatisfying to not know why the system predicts
what it does (especially the glaring mistakes). The root
cause is lack of transparency or interpretability.

We are interested in the question of transparency — “why
does a VQA system do what it does?” (See Fig. 1). Specif-
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ically, what evidence in the test input (image and question)
supports a particular prediction? In the context of VQA,
this question can be expressed as two subproblems:

o What words in the question does the model “focus on”
in order to answer the question?

o What pixels in the image does the model “look at”
while answering the question?

In this work, we use two visualization methods to tackle the
above problems. The first method (Sec. 3.1) uses guided
backpropagation (Springenberg et al., 2014) to analyze im-
portant words in the question and important regions in the
image. In the second method (Sec. 3.2), we occlude por-
tions of input and observe the change in prediction proba-
bilities of the model, to compute importance of question
words and image regions. In Sec. 4, we present qual-
itative and quantitative analyses of these image/question
‘importance maps’ — question importance maps are ana-
lyzed using their Part-of-Speech (POS) tags; image im-
portance maps are compared to ‘human attention maps’ or
maps showing where humans look for answering a question
about the image (Das et al., 2016).

2. Related Work

Many gradient based methods (Zeiler & Fergus, 2014; Si-
monyan et al., 2013; Springenberg et al., 2014) have been
proposed in recent years in the field of computer vision to
visualize deep convolutional neural networks. But most of
them focused on the task of image classification on iconic
images where the main object occupies most of the image.
Our work differs in 2 ways — 1) we also compute gradients
w.r.t. the input question, and 2) we use guided backprop-
agation (Springenberg et al., 2014) for the task of VQA,
where the model can look at different regions in the same
image for different questions.

Our occlusion experiment is inspired by (Zeiler & Fergus,
2014) who mask small regions in the image with a gray
patch, and observe the output of an image classification
model. We evaluate if the model looks at the same regions
in the image as humans do, while answering a question
about the image.

A few recent works (Ribeiro et al., 2016; Baehrens et al.,
2010; Liu & Wang, 2012) have begun to study the task of
providing interpretable post-hoc explanations for classifier
predictions. Such methods typically involve fitting or train-
ing a secondary interpretable mechanism on top of the base
‘black-box’ classifier predictions. In contrast, our work di-
rectly computes importance maps from the model of inter-
est without another layer of training (which could obfuscate
the analysis).

3. Approach

At ahigh level, we view a VQA model as a learned function
a = fy(i,q) that takes in an input image ¢ and a question
about the image ¢, is parameterized by parameters w, and
produces an answer a. In order to gauge the importance of
components of ¢ and q (i.e. pixels and words), we consider
the best linear approximation to f around each test point
(itesta qtest>:
f(Za Q) \2// f(itesta qtest)
best linear fit (1)

+[Z - Z.testa q— qtest]va(itcsta qtest)

Intuitively, the two key quantities we need to compute are
8f(itest7 qtest)/ai and 8f(itest7 qtest)/aq’ ie. the partial
derivatives of the function w.r.t. each of the inputs (image
and question). These expressions superficially look similar
to gradients computed in backpropagation-based training
of neural networks. However, there are two key differences
— (i) we compute partial derivatives of the probability of
predicted output, not the ground-truth output; and (ii) we
compute partial derivatives w.r.t. inputs (i.e. image pixel
intensities and word embeddings), not parameters.

Due to linearization above, elements of these partial deriva-
tives tell us the effect of those pixels/words on the final
prediction. These may be computed in the following two
ways.

3.1. Guided Backpropagation

Guided backpropagation is a gradient-based visualization
technique used to visualize activations of neurons in differ-
ent layers in CNNs. It has been shown to perform better
than its counterparts such as deconvolution (Zeiler & Fer-
gus, 2014) especially for visualizing higher order layers. It
is amodified version of backpropagation that restricts nega-
tive gradients from flowing backwards towards input layer,
resulting in sharper image visualizations.

Guided BP is identical to classical BP except in the way
the backward pass is computed in Rectified Linear Units
(ReLUs). Let h! denote the input to layer [ and h!*! de-
note the output. Recall that a ReLU is defined as h't! =
relu(h!) = max(h',0). Let G+ = 0f/on!+* denote the
partial derivative w.r.t. the output of the ReLU (received as
input in the backward pass). The key difference between
the two backprops (BP) is:

G'=[n' >0] G"*! [Classical BP]  (2)

G' = [n' > 0] - [G"' > 0] - G'** [Guided BP]  (3)

i.e. guided BP blocks negative gradients from flowing back
in ReLUs. For more details, please refer to (Springenberg
etal., 2014).
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Question :

what [VEgetablel is on the
plate ?

Predicted Answer :

Question : What |66 is the plate ?
Predicted Answer : white

broccoli

Question :
Predicted Answer : no

Question : |WAEFEl is the player ?
Predicted Answer : tennis court

Question :
his ‘arms ?
Predicted Answer : tennis racket
Question : What 'sport is this ?
Predicted Answer : tennis

(a)

Is there meat in this dish ?

What does the man wear on

Question : What kind of bird is
perched on the sill?
Predicted Answer : parrot

Question : What type of fruit is on
the plate?
Predicted Answer : banana

(b)

Figure 2. Results for Discrete Derivatives experiment. (a) shows heat maps for questions showing the importance of words in the
questions. Encouragingly, “vegetable” is the most important word in the first question for the predicted answer “broccoli”. (b) shows
the importance of different regions in images. In the top image, the region containing the parrot affects the model’s prediction the most.
Both visualization provide justifications for the predictions, resulting in increased transparency in the inner working of the VQA model.

Best viewed in color.

We use guided BP to compute ‘gradients’ of the probabil-
ity of predicted answer w.r.t. inputs (image and question).
Note that the language pathway in the models we use typ-
ically, does not contain ReLUs, thus these are true gra-
dients (not just gradient-based visualizations) on the lan-
guage side. We interpret the words/pixels with the high-
est (magnitude) gradients received as the most important
for the model since small changes in these lead to largest
changes in the model’s confidence in the predicted answer.

3.2. Discrete Derivatives

In this method, we systematically occlude subsets of the in-
put, forward propagate the masked input through the VQA
model, and compute the change in the probability of the
answer predicted with the unmasked original input. Since
there are 2 inputs to the model, we focus on one input
at a time, keeping the other input fixed (mimicing partial
derivatives). Specifically, to compute importance of a ques-
tion word, we mask that word by dropping it from the ques-
tion, and feed the masked question with original image as
inputs to the model. The importance score of the question
word is computed as the change in probability of the origi-
nal predicted answer.

We follow the same procedure on the images to compute
importance of image regions. We divide the image into a
grid of size 16 x 16, occlude one cell at a time with a gray
patch!, feed in the perturbed image with the entire question
to the model, and compute the decrease in the probability
of the original predicted answer. The generated importance

'a gray patch of intensities (R, G, B) = (123.68, 116.779,
103.939), mean RGB pixel values across a large image dataset
ImageNet (Deng et al., 2009) on which the CNN is trained.

maps are shown in Fig. 2.

4. Results

While image/question importance maps on individual in-
puts provide crucial insight into the inner-workings of a
model (e.g., see Fig. 2), what do the aggregate statistics
of these maps tell us about the model?

4.1. Analyzing Image Importance

In concurrent work (Das et al., 2016), we collected human
attention annotations for (question, image) pairs from VQA
dataset (Antol et al., 2015). Given a blurry image and a
question, humans were asked to deblur the regions in the
image that were helpful in answering the question.

Rank-correlation

Random 0.00007
Occlusion 0.07164
Guided backpropagation 0.12277
Human 0.62289

Table 1. Rank-correlation of importance maps with human atten-
tion maps (higher is better). The last row represents inter-human
agreement.

We evaluate the quality of image importance maps obtained
from the two methods (guided backpropagation and oc-
clusion) by comparing them to the human attention maps.
The human attention dataset contains annotations for 1374
(question, image) pairs from VQA (Antol et al., 2015) vali-
dation set. We take the absolute value of the importance
maps and compute their mean rank-correlation with the
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human attention maps. We first scale both the image im-
portance and human attention maps to 16x16, normalize
them spatially and rank the pixels according to their spa-
tial attention, and then compute correlation between these
two ranked lists. The results are shown in Table 1. We
find that both importance maps (occlusion and guided BP)
are (somewhat) positively correlated with human attention
maps, although it is far from inter-human correlation. Per-
haps surprisingly, they are better correlated than an explicit
attention model SAN (Yang et al., 2015) which achieves
a rank-correlation of -0.08836. Thus, our techniques re-
vealed an interesting finding — that even without attention
mechanisms, VQA models may be implicitly attending to
relevant regions in the image.

4.2. Analyzing Question Importance

06

=}
o .
w &

word-has-POS-tag)
o
o

Prob (word-is-most-important |

0
e =3 © 1 o & =3
X {0 @k < e e
N N \e““\“ WO o S o

Figure 3. Probability of a word being most important in a question
given that it has a certain POS tag. POS tags are sorted in the
decreasing order of their frequency in the entire dataset.

Since there is no human attention dataset for questions, we
instead analyze the importance maps for questions using
their POS tags. Our hypothesis is that wh-words and nouns
should matter most to a ‘sensible’ model’s prediction. We
plot the probability of a word being most important in a
question given that it has a certain POS tag. To get reliable
statistics, we picked 15 most frequent POS tags from the
VQA validation dataset, and grouped similar tags into one
category, e.g. WDT, WP, WRB are grouped as wh-words.
The histogram can be seen in Fig. 3. Indeed, wh-words are
most important followed by adjectives and nouns. Adjec-
tives and nouns rank high because many questions tend to
ask about characteristics of objects, or objects themselves.
This finding suggests that the language model part of the
VQA model is strong and is able to learn to focus on ap-
propriate words without any explicit attention procedure.

Note that for many occlusions, the model’s predicted an-
swer is different from the original predicted answer. In fact,
we found that the number of times the predicted answer
changes correlates with the model’s accuracy. It is able to
predict success/failure accurately 72% of the times. This
suggests that features that characterize these importance

maps can provide useful signals for predicting oncoming
failures.

5. Conclusion

In this paper, we work with two visualization methods —
guided backpropagation and occlusion — to interpret deep
learning models for the task of Visual Question Answering.
Although we focus on only one VQA model in this work,
the methods are generalizable to all other end-to-end VQA
models. The occlusion method can even be applied to any
(non-end-to-end) VQA model considering it as a black box.
We believe that these methods and results can be helpful
in interpreting the current VQA models, and designing the
next generation of VQA models.
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