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Abstract
This short paper presents a method for visual-
izing the response of a deep neural network to
a specific input image. Our method highlights
areas in the image that provide evidence for or
against a certain class. The method provides in-
sight into the decision-making process of deep
neural networks, which is important both to im-
prove models and to accelerate the adoption of
black-box classifiers in application areas such as
medicine. In experiments, we show how the
method can be used to gain insight into the clas-
sification made by deep convolutional neural net-
works trained on ImageNet data.

1. Introduction
Deep neural networks (DNNs) have become increasingly
powerful in recent years and deliver state-of-the-art per-
formance on difficult classification tasks. To achieve such
high performances, these networks have also become much
larger and deeper. Consequently, this comes at a price: it is
very hard to comprehend how they operate, even if the data
is well understood (e.g., images). To date, training a DNN
involves a lot of trial-and-error, until a satisfying solution
is found. The resulting networks resemble complex non-
linear mathematical functions with millions of parameters.
This makes it difficult to improve the networks and develop
new training algorithms. Moreover, the adoption of black-
box methods such as DNNs in industry, government and
healthcare is complicated by the fact that their responses
are very difficult to understand.
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Thus, methods for visualizing the decision-making process
and inner workings of DNNs can be of great value for their
qualitative assessment. Understanding them better will en-
able us to find new ways to guide training and improve ex-
isting successful networks by detecting weaknesses, as well
as accelerating their adoption in society.

This paper builds on a collection of new and intriguing
methods for analyzing DNNs through visualization, which
has emerged in the literature recently. We present a novel
visualization method and exemplify it for deep convolu-
tional networks (DCNNs), which are tailored specifically
to image recognition. The method finds and highlights the
regions in image space that activate the nodes (hidden and
output) in the neural network.

2. Related Work
We base our method on the work of Robnik-Šikonja and
Kononenko (2008), who propose a method for explaining
predictions of probabilistic classifiers, given a specific in-
put instance. The basic idea of their method is that the rel-
evance of a feature xi can be determined by comparing the
prediction p(c|x) to p(c|x\i), where x\i denotes the set of
all input features except xi. A large prediction difference
means that the feature contributed much to the prediction
of class c, and vice versa.

To estimate the class probability p(c|x\i) where feature xi

is unknown, it is approximately marginalized out:

p(c|x\i) ≈
∑
xi

p(xi)p(c|x\i, xi) (1)

(with the sum running over all possible values of xi). The
underlying assumption is p(xi|x\i) ≈ p(xi), i.e., that xi is
independent of the other features, x\i. In practice, the prior
probability p(xi) is usually approximated by the empirical
distribution for that feature.
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The authors evaluate the difference between p(c|x\i) and
p(c|x) as the weight of evidence, given by

WEi(c|x) = log2 (odds(c|x))− log2
(
odds(c|x\i)

)
, (2)

where
odds(c|x) = p(c|x)/(1− p(c|x)) . (3)

The resulting relevance vector has positive and negative en-
tries. A positive value means that the corresponding fea-
ture has contributed for the class of interest, and a nega-
tive value indicates that the feature contributed evidence
against the class.

A similar method (in the sense that the explanation is vi-
sualized directly in image space) is proposed by Simonyan
et al. (2013). They perform image-specific class saliency
visualization, where the influence of the input features xi

(typically pixels) on the assigned class c is computed by
the partial derivative of the class score Sc with respect to
the features, si = ∂Sc/∂xi. The scores Sc are given by the
nodes in the fully connected layer before the output layer.

Zhou et al. (2014) generate, for a specific input image, a
simplified version of that image that still gets classified cor-
rectly, to visualize the regions most important for the clas-
sification. They do this by iteratively removing segments
of the image and thus keeping as little visual information
as possible.

3. Approach
There are two main drawbacks to the method of Robnik-
Šikonja and Kononenko (2008) which we address in this
paper. We also introduce a way to visualize the role of hid-
den layers of a DNN using the principles of their method.

3.1. Conditional Sampling

The approximation p(xi|x\i) ≈ p(xi) used for equation (1)
is not very accurate, especially for image data. To adapt the
method for the use with DCNNs, we utilize the following
observations about natural images: a pixel’s value depends
most strongly on pixels in some neighborhood around it
(and not so much on pixels far away), and it does not de-
pend on its location in the image (in terms of coordinates).
Therefore, we can condition a feature’s value xi on its sur-
rounding pixels, by finding a patch x̂i of size l × l that
contains xi and condition on the remaining pixels in that
patch,

p(xi|x\i) ≈ p(xi|x̂\i) . (4)

We can use the same probabilistic model for all pixels, in-
dependent of their location in the image. The advantage of
this approximation is that we do not have to model a dis-
tribution over the whole feature space, but only on small
image patches, which makes it much more feasible.

Algorithm 1 Evaluating the Prediction Difference
input a classifier function, input image x of size n × n,

inner patch size k, outer patch size l > k, class of interest
c, probabilistic model over patches of size l × l, number
of samples S
initialization: WE = zeros(n*n), counts = zeros(n*n)
for every patch xw of size k × k in x do

x′ = copy(x)
sumw = 0
define patch x̂w of size l × l that contains xw

for s = 1 to S do
x′
w ← xw sampled from p(xw|x̂w\xw)

evaluate the classifier to get p(c|x′)
sumw += p(c|x′)

end for
p(c|x\xw) := sumw/S
WE[coordinates of xw]

+= log2(odds(c|x))− log2(odds(c|x\xw))
counts[coordinates of xw] += 1

end for
output WE / counts (point-wise)

For a feature to become relevant when using conditional
sampling, it has to satisfy two conditions: being relevant
to predict the class of interest, and be hard to predict from
the neighboring pixels. Relative to the marginal method,
we therefore downweight the pixels that can easily be pre-
dicted and are thus redundant in this sense.

3.2. Multivariate Analysis

Robnik-Šikonja and Kononenko (2008) take a univariate
approach: one feature at a time is removed. We would ex-
pect that a neural network is robust to just one feature of
a high-dimensional input being unknown, like a pixel in
an image. Therefore, we will remove several features at
once by again make use of our knowledge about images by
strategically choosing these feature sets: patches of con-
nected pixels. So instead of going through all individual
pixels, we go through all patches of size k×k in the image,
implemented in a sliding windows fashion. The patches are
overlapping, so that ultimately an individual pixel’s rele-
vance is obtained by taking the average relevance obtained
from the different patches it was in.

Algorithm 1 illustrates how this method can be imple-
mented, incorporating the two proposed improvements.

3.3. Visualizing Hidden Layers

When trying to understand neural networks, it is not only
interesting to analyze the input-output relation, but also to
look at what is going on at the hidden layers. We can adapt
the method to see how the units of any layer of the network
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Figure 1. Visualization of the relevance of input features for the predicted class. All networks make correct predictions, except
AlexNet predicts tiger cat instead of tabby cat. We show the relevance of the input pixels on the highest predicted class (output layer).
(a) shows the sensitivity map (Simonyan et al., 2013), (b) the prediction difference with marginal sampling, and (c) the same result
overlaid with the input image. (d)+(e) show the results with conditional sampling. We used patch sizes k = 10 and l = 14 (see
alg. 1). For each image, we show the results for the three networks AlexNet, GoogLeNet and VGG net (columns). The colors in the
visualizations have the following meaning: red stands for evidence for the predicted class; blue regions are evidence against the class.
White/transparent pixels do not have an influence on the decision.

influence a unit from a deeper layer by rewriting equation
(1) as an expectation and taking the direct difference in ac-
tivations instead of equation (2). For feature maps in con-
volutional layers, an average over the relevance values of
all nodes in that map can be shown.

4. Experiments
In this section, we illustrate how the proposed visualization
method can be applied, using images from the ILSVRC
challenge (Russakovsky et al., 2015) (a large dataset of
natural images from 1000 categories), and three DCNNs:
the AlexNet (Krizhevsky et al., 2012), the GoogLeNet
(Szegedy et al., 2015) and the (16-layer) VGG network (Si-
monyan & Zisserman, 2014). We used the publicly avail-
able pre-trained models that were implemented using the
deep learning framework caffe (Jia et al., 2014). Analyz-

ing one image took us 0.5, 1 and 5 hours for the respective
classifiers AlexNet, GoogLeNet and VGG (with 4GB GPU
memory and using mini-batches).

We compare our method to the sensitivity analysis by Si-
monyan et al. (2013) (see section 2).

For marginal sampling we use the empirical distribution,
i.e., replace a patch with samples taken from other images
in the dataset at the same location. For conditional sam-
pling we use a multivariate normal distribution. For both
sampling methods we use 20 samples to estimate p(c|x\i).

4.1. Explaining the Classification Outcome

Figure 1 shows visualizations of the spatial support for the
highest scoring class, for the three different classifiers, us-
ing marginal and conditional sampling. We also compare
our method to the sensitivity analysis by Simonyan et al.
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Figure 2. Visualization of the support for the top-three scoring classes in the penultimate layer and output layer. The second row
shows the results with respect to the penultimate layer; the third row with respect to the output layer. For each image, we additionally
report the values of the units (unnormalized activation value and probability, respectively). We used the AlexNet with conditional
sampling and patch sizes k = 10 and l = 14 (see alg. 1). Red pixels are evidence for a class, blue against it.

(2013). Red areas indicate evidence for the class, while
blue indicates evidence against the class. For example,
large parts of the cat’s face are blue for the GoogLeNet,
while the ear is red with high intensity. This indicates that
the classifier does not recognize the face as being indicative
of the tabby cat class (but e.g. looks more like another cat
class), while the ear appears very distinctive.

One obvious difference to the sensitivity map is that with
our method, we have signed information about the feature’s
relevance. (The partial derivatives are of course signed, but
this encodes a different kind of information.) We can see
that often, the sensitivity analysis highlights the class object
in the image. Our method does not necessarily highlight
the object itself, but the things that the classifier uses to
detect what is in the image, which can also be contextual
information.

When comparing marginal and conditional sampling, we
see that in general, conditional sampling gives sharper re-
sults. For the rest of our experiments, we will use condi-
tional sampling only.

Comparing the visualizations of the three classifiers, we see
that the explanations for their decisions differ. For exam-
ple, we can see that in (d) for the penguin, the VGG net-
work considers the penguin’s head as evidence for the class,
whereat the AlexNet considers it evidence against the class.

4.2. Pre-Softmax versus Output Layer

If we visualize the influence of the input features on the
penultimate (pre-softmax) layer, we show only the evi-
dence for/against this particular class, without taking other

classes into consideration. After the softmax operation
however, the values of the nodes are all interdependent: a
drop in the probability for one class could be due to less
evidence for it, or because a different class becomes more
likely. Figure 2 compares visualizations for the last two
layers. By looking at the top three scoring classes, we can
see that the visualizations in the penultimate layer look very
similar if the classes are similar (like different dog breeds).
When looking at the output layer however, they look rather
different. Consider the case of the elephants: the top three
classes are different elephant subspecies, and the visual-
izations of the penultimate layer look similar since every
subspecies can be identified by similar characteristics. But
in the output layer, we can see how the classifier decides
for one of the three types of elephants and against the oth-
ers: the ears in this case are the crucial difference. Consider
further the golf ball example. In the penultimate layer, the
evidence for the top three classes concentrates around the
ball, and additionally the classifier seems to be looking at
the background. In the output layer, we can now observe
that the golf ball gets predicted with very high certainty,
although large parts of the image are blue, i.e., represents
evidence against the class. That the classifier still makes
the correct decision could be due to the two intensive red
dots on the golf ball: maybe the surface structure of the ball
is the deciding factor and outweighs the evidence in favor
of the rugby ball.

4.3. Deep Visualization of Hidden Network Layers

Section 3.3 illustrated how our method can be used to un-
derstand the role of hidden layers of a DCNN. To get a
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Figure 3. Visualization of four different feature maps, taken
from the ”inception 3a/output” layer of the GoogLeNet (a layer
from the middle of the network). Shown is the average relevance
of the input features over all activations of the feature map. We
used patch sizes k = 10 and l = 14 (see alg. 1). Red pixels
activate a unit, blue pixels decrease the activation.

sense of what single feature maps in convolutional layers
are doing, we can look at their visualization for different
input images and search for patterns in their behavior. Fig-
ure 3 shows this for four different feature maps from a layer
from the middle of the GoogLeNet network. Here, we can
directly see which kind of features the model has learned
at this stage in the network. For example, one feature map
is activated by the eyes of animals (second column), and
another is looking mostly at the background (last column).

5. Conclusion
We have presented a new method for visualizing deep neu-
ral networks that improves on a method from Robnik-
Šikonja and Kononenko (2008), by using a more powerful
conditional, multivariate model. The visualization method
shows which pixels of a specific input image are evidence
for or against a node in the network. Compared to the

sensitivity analysis, the signed information offers new in-
sights - for research on the networks, as well as the ac-
ceptance and usability in domains like healthcare. How-
ever, this information comes at the price of longer compu-
tation time. For further reading, we refer to the full paper
at https://arxiv.org/abs/1603.02518.
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