
Visualizing Deep Network Training Trajectories with PCA

Eliana Lorch ELIANALORCH@GMAIL.COM

Thiel Fellowship

Abstract
Neural network training is a form of numeri-
cal optimization in a high-dimensional parame-
ter space. Such optimization processes are rarely
visualized because of the difficulty of represent-
ing high-dimensional dynamics in a visually in-
telligible way. We present a simple method for
rendering the optimization trajectories of deep
networks with low-dimensional plots, using lin-
ear projections obtained by principal component
analysis. We show that such plots reveal visually
distinctive properties of the training processes,
and outline opportunities for future investigation.

1. Introduction
Deep neural networks can be trained to perform highly
complex tasks beyond the abilities of classical algorithms,
but the training process itself—the path that stochastic op-
timizers take through parameter space, from an initial ran-
domized network to an effectively trained one—is not very
well understood. In convex optimization, there is a strong
theoretical understanding of the path that different opti-
mization methods take and how fast they converge to the
global optimum (Bertsekas, 2011), but deep neural network
loss functions are very non-convex. There are some theo-
retical results (e.g. about the nature of obstacles in the loss
landscape; Dauphin et al., 2014), but we don’t yet have a
thorough understanding.

Geometric intuition might reveal aspects of optimization in
practice that could help improve our training techniques or
inspire theoretical investigations of particular phenomena.
To visualize parameter space, with hundreds of thousands
or millions of dimensions, one approach is to reduce the
dimensions down to just two or three. We are interested
in choosing a linear subspace that maximally preserves the
optimization trajectory’s shape, in order to observe patterns
that are meaningful in the full parameter space.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

2. Related Work
Most visualizations of deep neural networks illustrate as-
pects of the network itself; there is not much work on
visualizing the training trajectory. The primary work in
this area (Goodfellow et al., 2014) renders the loss surface
along two dimensions: the line between the initial and final
parameter vectors, and for each point along that line, the
unique perpendicular that passes through the correspond-
ing point on the training path. By straightening out this
path, it’s easier to see what (if any) structures in the cost
surface the training process encounters along the way (e.g.
plateaus, valleys, local minima), but the trade-off here is
that deviations of the same magnitude from this straight
line look identical, regardless of the particular shape the
path takes instead. This visualization reveals interesting
and surprising properties of the loss surface; a different set
of properties may be visualized by rendering the training
trajectory in a way that preserves its shape as much as pos-
sible.

3. Method
Our approach is simple: we reduce the dimensionality of
the parameter trajectory by applying principal component
analysis (PCA), then plot two or three of the principal coor-
dinates (PCs) as a visualization. PCA identifies dimensions
which capture the most variance across the training pro-
cessthat is, directions in which there is a lot of movement.
It’s intuitively plausible that such directions would be in-
teresting to examine visually. Yet although we are identify-
ing “interesting” directions in a data-dependent way, a PCA
rendering is just a particular linear projection of the full pa-
rameter space, which means it’s a form of dimensionality
reduction that is likely to preserve some geometric intu-
ition.

The method in detail is to take snapshots of the parame-
ters throughout training, and then after training is complete,
treat the collection of snapshots as a set of n-dimensional
vectors (where n is the number of parameters in the net-
work). We could consider these vectors to be samples from
a hypothetical distribution of parameter settings we would
be likely to see at any point during training. Running PCA



Visualizing Deep Network Training Trajectories

(a) µ = 0.5; neg loss vs. PCs 9 and 11 (b) µ = 0.9; neg loss vs. PCs 9 and 11 (c) µ = 0.99; neg loss vs. PCs 9 and 11

(d) µ = 0.5; PCs 9, 11, 12 (e) µ = 0.9; PCs 9, 11, 12 (f) µ = 0.99; PCs 9, 11, 12

Figure 1. The top row shows a 3D parametric plot of the PCA-projected training trajectory, with negative test loss on the z axis (higher
is better) and principal components 9 and 11 on the x and y axes, for each of three separate training runs with different values for
momentum. The trajectory is colored from yellow to indigo, where yellow indicates high loss and indigo indicates low loss; all the plots
in this paper use the same color scale (each color always represents the same absolute test loss). The corresponding plots in the bottom
row show the same training runs, but replace negative loss on the z axis with principal component 12.

on this sample set corresponds to finding a linear projec-
tion that explains the most variance in this distribution, or
equivalently, one that minimizes the reconstruction error of
backprojection.

4. Experiments
We performed a number of exploratory experiments on
simple CIFAR-10 and MNIST models trained with SGD
(with momentum) and ADAM (Kingma & Ba, 2015), with
various hyperparameters, and observed a number of consis-
tent patterns. We used the cifar10 quick and MNIST
lenet models included in the deep learning framework
Caffe (Jia et al., 2014) with various optimizer configura-
tions. In each experiment, we ran the optimizer on CIFAR-
10 for 5,000 iterations, capturing a snapshot every 5 itera-
tions, (for a total of 1,000 snapshots); on MNIST, we ran
10,000 iterations and captured 2,000 snapshots.

We then performed PCA using scikit-learn (Pe-
dregosa et al., 2011), extracting the top 12 principal com-
ponents. Approximations to PCA (Szlam et al., 2014)
result in the same visual features and run an order of
magnitude faster (on our data), which is useful for large

networks or long training trajectories. For our CIFAR-
10 trajectories (1,000 parameter snapshots ⇥ 145,578 pa-
rameters), exact PCA takes only 1–2 minutes. Initial
runs on our MNIST trajectories (2,000 parameter snap-
shots ⇥ 431,080 parameters) took approximately 20 min-
utes, so we used scikit-learn’s implementation of
randomized PCA (Szlam et al., 2014) for our MNIST fig-
ures.

We then projected each training trajectory onto every possi-
ble pair or triplet of its top 12 principal components (PCs).
We also augmented the 2D plots (trajectories projected
onto PC pairs) with a z-axis representing negative test loss.
Included in this paper are samples of these plots, where the
PCs were selected by hand to highlight visual features.

4.1. Momentum

We performed training runs with various values of the mo-
mentum hyperparameter µ, between 0 to 0.99. In all of
these runs, the learning rate ↵ was set to 0.001. For both
CIFAR-10 and MNIST, training with low momentum pro-
duces dense, jagged paths (e.g., Figures 1(d), 2(d)); on the
other hand, training with high momentum produces plots
with sparse, arcing traces (e.g., Figures 1(f), 2(f)). The ex-



Visualizing Deep Network Training Trajectories

(a) µ = 0.5; PCs 5, 7, 11 (b) µ = 0.9; PCs 5, 7, 11 (c) µ = 0.93; PCs 5, 7, 11

(d) µ = 0.5; PCs 5, 7, 11 (e) µ = 0.9; PCs 5, 7, 11 (f) µ = 0.93; PCs 5, 7, 11

Figure 2. Examples of 2,500-iteration trajectories from the lenet MNIST model with varying values of momentum (µ). Note that
higher momentum makes the traces increasingly smooth.

ample plots were chosen because the pattern is especially
apparent in them, but we see this pattern generally across
combinations of PCs on which the data is projected.

This pattern reinforces intuition about the role of momen-
tum in stochastic gradient descent: it encourages the opti-
mizer to maintain roughly the same direction across time
steps, and discourages quick turns. As we can see in Fig-
ure 1(c), with too high of a momentum value, the training
gradient itself is not given enough weight for the loss to
be consistently reduced, and training does not converge in
the given number of iterations (the color of the trajectory
does not reach purple). On the other hand, when momen-
tum is too low, training still succeeds, but takes longer to
converge.

4.2. Oscillations

Another curious pattern this visualization reveals is that
sometimes PC coordinates seem to be oscillating out of
phase, tracing out circles (Figures 3(b), 3(a)) or Lissajous
curves (Figures 3(c), 3(e)) in the plots. While multiple PCs
appear to oscillate, not all do, and the ones that do vary de-
pending on the training run. This means that a significant
fraction, but not all, of the parameter variance during train-
ing is explained by oscillatory behavior. (Oscillations in all
PCs would imply that the training process is dominated by
oscillation, which would be even more surprising.)

Such oscillations may be related to a learning dynamic the-
orized by (Qian, 1999), which shows (non-stochastic) gra-
dient descent with momentum to be equivalent (in the limit,
near a local optimum) to a system of coupled, damped
harmonic oscillators (with masses determined by the mo-
mentum parameter). We see this pattern both in models
trained with SGD and with ADAM, which suggests that
harmonic oscillation may be a generally observable dy-
namic of gradient-based algorithms in practice (not just in
the limit).

4.3. Predictable first principal components

In every experiment we’ve run where the test loss fol-
lowed the typical pattern of generally decreasing until its
noticeably reduced (i.e. whenever training is “successful”),
the first principal component (PC1) has always increased
monotonically. PC2 always increases along the first prin-
cipal component axis and then decreases again (usually
around the halfway point). See Figure 4 for examples.
We don’t yet know what these components represent, but
this pattern seems to be robust across the CIFAR-10 and
MNIST models we trained with various optimization algo-
rithms and hyperparameters.



Visualizing Deep Network Training Trajectories

(a) µ = 0.9; �loss vs. PCs 5, 6 (b) µ = 0.9; PCs 2, 5, 6 (c) µ = 0.5; PCs 9, 2, 12

(d) MNIST; µ = 0.93; �loss vs. PCs 1, 6 (e) MNIST; µ = 0.9; PCs 1, 6, 10 (f) MNIST; µ = 0.98; PCs 4, 6, 8

Figure 3. Examples of oscillatory behavior in various forms. Figures 3(a) and 3(b) are two different views of the same training run as
Figures 1(b) and 1(e). Figure 3(c) is a different view of the same training run as Figure 1(a) and 1(d). Figures 3(d), 3(e), and 3(f) show
similar behaviors on a different dataset, namely MNIST.

(a) µ = 0.5; PCs 1, 2 (b) ↵ = 0.0001; PCs 1, 2 (c) ADAM; PCs 1, 2

(d) MNIST µ = 0.5; PCs 1, 2 (e) MNIST µ = 0.9; PCs 1, 2 (f) MNIST µ = 0.9, 200; PCs 1, 2

Figure 4. PC1 and PC2 seem to always trace out similar shapes as long as training is successful. PC1 in particular is monotonic.



Visualizing Deep Network Training Trajectories

5. Future Work
We are interested in investigating several further questions:

• How robust are these patterns? We tested simple con-
volutional MNIST and CIFAR-10 models with vari-
ous optimization algorithms and hyperparameters, but
do other architectures (RNNs, LSTMs, etc) and larger
datasets share these visual features? Are there dis-
tinguishing attributes between different optimization
methods?

• Can we visualize the principal component axes them-
selves? Do they have any natural interpretations?

• Would it be useful to visualize subsets of the parame-
ters (e.g., single layers or filters)?

• Would techniques that normalize the weights change
the picture, such as batch normalization (Ioffe &
Szegedy, 2015), path normalization (Neyshabur et al.,
2016), natural gradient (Amari, 1998), or various
kinds of data-dependent initialization (Kraehenbuehl
et al., 2016; Mishkin & Matas, 2016)?

• Would it be useful to plot multiple training runs of
the same model on the same axes (e.g. by applying a
single PCA to all of them)?

• How do the principal component axes change depend-
ing on the segment of training over which the PCA is
run? If the axes converge early in training, would it be
possible to exploit them to accelerate training (e.g., by
increasing PC1, if we know it will increase monoton-
ically for the rest of training)?

6. Discussion
We select the highest-variance components of the parame-
ter trajectories with PCA, and appear to pull out some “in-
variant” dynamics of the training process—the most domi-
nant dynamics nearly always take the same form, and some
oscillations are generally present—even with entirely dif-
ferent architectures and datasets. This visualization makes
such structure visible where it would otherwise be obscured
by the high dimensionality of the parameter space.

It’s unclear whether this technique will lead to improve-
ments in neural network optimization. However, it’s one of
very few tools so far that can give a visual representation
of the process of training a deep network, exposing new
patterns for further investigation.

References
Amari, S.-I. Natural gradient works efficiently in learning.

Neural Computation, 10(2):251–276, 1998.

Bertsekas, D. P. Incremental gradient, subgradient, and

proximal methods for convex optimization: A survey.
In Optimization for Machine Learning, pp. 1–38. MIT
Press, 2011.

Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli,
S., and Bengio, Y. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex opti-
mization. In Advances in Neural Information Processing
Systems 27, pp. 2933–2941. 2014.

Goodfellow, Ian J, Vinyals, Oriol, and Saxe, Andrew M.
Qualitatively characterizing neural network optimization
problems. arXiv preprint arXiv:1412.6544, 2014.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pp. 448–456, 2015.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kraehenbuehl, P., Doersch, C., Donahue, J., and Darrell,
T. Data-dependent initialization of convolutional neu-
ral networks. In International Conference on Learning
Representations, 2016.

Mishkin, D. and Matas, J. All you need is a good init. In
International Conference on Learning Representations,
2016.

Neyshabur, B., Tomioka, R., Salakhutdinov, R., and Sre-
bro, N. Data-dependent path normalization in neural
networks. In International Conference on Learning Rep-
resentations, 2016.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Qian, N. On the momentum term in gradient descent learn-
ing algorithms. Neural Networks, 12(1):145–151, 1999.

Szlam, A., Kluger, Y., and Tygert, M. An implementation
of a randomized algorithm for principal component anal-
ysis. arXiv preprint arXiv:1412.3510, 2014.


