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Abstract
Convolutional Neural Networks (CNNs) have
been keeping improving the performance on Im-
ageNet classification since it is firstly successful-
ly applied in the task in 2012. To achieve better
performance, the complexity of CNNs is contin-
ually increasing with deeper and bigger architec-
tures. Though CNNs achieved promising exter-
nal classification behavior, understanding of their
internal work mechanism is still limited. In this
work, we attempt to understand the internal work
mechanism of CNNs by probing the internal rep-
resentations in two comprehensive aspects, i.e.,
visualizing patches in the representation spaces
constructed by different layers, and visualizing
visual information kept in each layer. We further
compare CNNs with different depths and show
the advantages brought by deeper architecture.

1. Introduction
With decades of dedicated research efforts, CNNs recently
made another wave of significant breakthroughs in image
classification tasks, and achieved comparable error rates
to well-trained human on ILSVRC20141 image classifica-
tion task (Russakovsky et al., 2014). The well-trained C-
NNs on ILSVRC2012 even rival the representational per-
formance of IT cortex of macaques on visual object recog-
nition benchmark created by (Cadieu et al., 2013). C-
NN was introduced by LeCun et al. (1989) for hand-
written digits classification, the designed CNN architecture
was inspired by Hubel and Wiesel’s discovery of locally-

1ILSVRC stands for ImageNet Large Scale Visual Recogni-
tion Challenge, the challenge has been run annually from 2010 to
present.
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sensitive, orientation-selective neurons in the cat’s visual
system (Hubel & Wiesel, 1962). With several big (in terms
of number of filters in each layer) and deep (in terms of
number of layers) CNNs, Krizhevsky et al. (2012) won
the image classification competition in ILSVRC2012 by a
large margin over traditional methods. The classification
error rate was further significantly reduced by Szegedy
et al. (2014); Simonyan & Zisserman (2014); He et al.
(2014) with deeper CNNs. In order to understand CNN,
we attempt to gain the insights into the internal behavior
of trained models using the visualization technologies, as
illustrated in Figure 1.

Though external classification behavior of CNNs is encour-
aging, the understanding of CNNs’ internal work mecha-
nism is still limited. In this paper2, we attempt to under-
stand the internal work mechanism by probing the internal
representations (a.k.a. internal activations) in two aspects:

1. We visualize representation spaces constructed by in-
ternal layers. In CNN, each layer constructs a repre-
sentation space for image patches with corresponding
receptive field size. The representation spaces are vi-
sualized by t-SNE (Van der Maaten & Hinton, 2008),
where patches with similar representations in a lay-
er are showed in close positions in a 2-dimensional
space.

2. We visualize internal representations for an image via
deconvolution (Zeiler & Fergus, 2014). In CNN, each
layer generates a new representations for an image in
an information processing way, the new representation
of each layer is projected back to the pixel space for
understanding what information is kept.

Considering the deeper CNN designed by (Simonyan &
Zisserman, 2014) has achieved significantly better perfor-
mance than the CNN used by Krizhevsky et al. (2012), we
further compare the internal work mechanism of these two

2This work was done when Wei Yu and Yalong Bai were in-
terns at Microsoft Research.
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Figure 1. The illustration of external and internal behavior of a CNN. The external behavior is output prediction categories for input im-
ages. The internal behavior is to be probed by visualizing the representation spaces constructed by each layer and the visual information
kept in each layer.
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Figure 2. The architectures of AlexNet and VGG-16. The top part is the architecture of AlexNet, and the bottom part is the architecture
of VGG-16

CNNs (named as VGG-16 and AlexNet respectively). The
results show that VGG-16 is better at removing unrelated
background information.

The rest of the paper is organized as follows. We cover re-
lated work in Section 2 and then describe the architectures
of VGG-16 and AlexNet in Section 3. The visualization of
internal representations is introduced section 4. The com-
parison of VGG-16 and AlexNet is present in Section 5.
We discuss the conclusion in Section 6.

2. Related work
In order to open the “black box” of CNN, researchers
have proposed several approaches to visualize the filter-

s3 to probe what kinds of patterns are these filters favor-
ing. Krizhevsky et al. (2012) directly visualized the filters
learned in the first layer to judge whether the parameters
of a trained CNN is apart from randomness. Since filters in
high layers receive inputs from their previous layers instead
of pixels, there is no direct way to visualize them in pixel
space. Girshick et al. (2013); Yu et al. (2014) used a non-
parametric method, a filter is visualized by image patch-

3In CNN, neurons are organized by layer, each neuron receives
neuron activations from previous layer and weighted by weight-
s in the connections. In fully-connected layer, each neuron is
connected to all neurons in previous layers with its own weight-
s. While in convolutional layer, neurons are further organized by
feature map and only locally connected to neurons in previous
layer. Moreover, all neurons in a feature map share the same filter
(weights bank), so neurons in a feature map are favoring the same
kind of pattern.
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Table 1. Size and stride of receptive fields in each layer of VGG-16.
layer c1 1 c1 2 p1 c2 1 c2 2 p2 c3 1 c3 2 c3 3
size 3 5 6 10 14 16 24 32 40

stride 1 1 2 2 2 4 4 4 4
layer p3 c4 1 c4 2 c4 3 p4 c5 1 c5 2 c5 3 p5
size 44 60 76 92 100 132 164 196 212

stride 8 8 8 8 16 16 16 16 32

Table 2. Size and stride of receptive fields in each layer AlexNet.
layer c1 p1 c2 p2 c3 c4 c5 p5
size 11 15 47 55 87 119 151 167

stride 4 8 8 16 16 16 16 32

es with highest activations to this filter. Zeiler & Fergus
(2014) also visualize filters by patches with highest activa-
tions, together with their reconstructed versions via decon-
volution network. The reconstructed patch only focuses on
the discriminant structure in original patch, and better ex-
hibit the filters’ favored patterns.

In contrast to the above non-parametric methods, Erhan
et al. (2009) visualised deep neural networks by finding an
image which maximises the neuron activation of interest
by carrying out an optimisation using gradient ascent in the
image space. The method was later used by Le et al. (2012)
to visualize the “cat” neuron learned in a deep unsupervised
auto-encoder. Recently, Simonyan et al. (2013) employed
this method to visualize neurons corresponding categories
in last layer. Mahendran & Vedaldi (2014) generalize this
method to find images in the image space with similar ac-
tivations in some layer to an input image.

Existing methods mostly focus on visualizing individual
filter or neuron, and only partially reveal the internal work
mechanism of CNN. In this paper, we do visualization in
more comprehensive ways, where the representation spaces
constructed by all filters of a layer are visualized, and all
activations of a layers are used to reconstruct the image via
deconvolution network.

3. CNN configuration details
3.1. Architecture

In this section, we first introduce the architectures of t-
wo CNNs (AlexNet and VGG-16). We used the released
VGG-164 which has achieved 29.5% top-1 error rate on
ILSVRC2012 validation set with single centre-view predic-
tion (Simonyan & Zisserman, 2014). In particular, we re-
train a model of AlexNet without local response normaliza-

4http://www.robots.ox.ac.uk/˜vgg/
research/very_deep/

tion layers, which achieved 42.6% top-1 error rate with sin-
gle center-view prediction (Krizhevsky et al., 2012). Both
CNNs receive RGB image with fixed size of 224 × 224
subtracted by the mean image computed on training set.

The overall architectures of these two CNNs are illustrated
in Figure 2. AlexNet consists of 8 weight layers includ-
ing 5 convolutional layers and 3 fully-connected layers, and
three max-pooling layers are used following the first, sec-
ond and fifth convolutional layers. The first convolutional
layer has 96 filters of size 11× 11 with a stride of 4 pixels
and padding with 2 pixels. The stride and padding of other
convolutional layers are set as 1 pixel. The second convo-
lutional layer has 256 filters of size 5× 5. The third, fourth
and fifth convolutional layers have 384, 384 and 256 filters
with size of 3× 3 respectively.

The used VGG-16 is much deeper which consists of 16
weight layers including thirteen convolutional layers with
filter size of 3×3, and 3 fully-connected layers. The config-
urations of fully-connected layers in VGG-16 are the same
with AlexNet. The stride and padding of all convolution-
al layers are fixed to 1 pixel. All convolutional layers are
divided into 5 groups and each group is followed by a max-
pooling layer as showed in Figure 2. Max-pooling is car-
ried out over a 2 × 2 window with stride 2. The number
of filters of convolutional layer group starts from 64 in the
first group and then increases by a factor of 2 after each
max-pooling layer, until it reaches 512.

3.2. Receptive field

The receptive field of a neuron is its covered region in the
image plane. The size and stride of receptive field of a
neuron is determined by the CNN architecture. Table 1 and
Table 2 list the receptive field size and stride of neurons
of different layers in VGG-16 and AlexNet, respectively.
Although both CNNs output feature maps with the same
size in last pooling layer, the neurons of VGG-16 cover the
receptive field with larger size.

4. Internal work mechanism of CNN
In this section, we focus on visualizing the representation
spaces constructed by different layers and visual informa-
tion extracted in different layers.

http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
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Figure 3. Representation space of c5 3 (top part) and c4 1 (bottom part). Column (a) is the embedding plane by dimensionality reduction,
column (b) is the three subregions sampled from whole plane, column (c) is the selected patches and column (d) shows filters with high
activations of corresponding patches in column (c). Filters showed by the reconstructed results of patches with highest activations in
ILSVRC2012 validation set. (Best viewed in color)

4.1. Representation space

As each filter generates an activation for a patch located
in its receptive field, all filters in a layer actually construct
a representation space for patches with size of the corre-
sponding receptive field. Visualizing filters by their highest
activated patches only partially shows each dimension of
the representation space. Here, we utilize t-SNE (Van der
Maaten & Hinton, 2008) to visualize the representation
space through dimension reduction, where patches close
in the representation space are embedded close in the 2-
dimensional space. As there are lots of empty and over-
lapping regions in original embedding, we fill every patch
with its nearest neighbor in original embedding. Figure 3
illustrates the representation spaces of two selected layers.

In the representation space of c5 3, semantic-level similar
patches are embedded close, e.g. the three zoom-in subre-
gions are about car, insect, dog face. The filters with high-
est activations for patches in these subregions also showed
semantic-level consistence. Meanwhile, ways to represent-

ing patches are different. In the car example, the filters
with high activations are car parts, such as car window (1st,
5th and 6th filter), the part of bonnet (2nd filter), wheel (3rd

and 4th filter). In the dog example, the filters with high ac-
tivations are the dogs with different appearances or poses.

In the representation space of c4 1, near patches are with
similar texture or simple shape. Patches in the first subre-
gion are oblique lines or arcs. Patches in the second sub-
regions are mainly about animal furs, while patches in the
third subregion are mainly about water texture.

4.2. Visual information extraction

In CNN, each layer forms a new representation for an in-
put image by gradually extracting discriminative informa-
tion. Here, we visualize the new representation of a layer
via deconvolution network (Zeiler & Fergus, 2014). The
visualization reveals the discriminant image structure that
generates that representation. Figure 4 shows several ex-
amples of visual results reconstructed from representations
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Figure 4. Visualization of visual information processing through different layers. The first column shows five input images, the following
7 columns show the reconstruction results of every two convolutional layers of VGG-16, and the last column shows the reconstruction
result of last fully-connect layer. From top to bottom, the images are from lesser panda, kit fox, Siberian husky, hatchet and mousetrap
respectively. (Best viewed electronically)

from several layers. It can be observed that, unrelated infor-
mation is gradually removed from low layers to high layers
(from left to right in the figure). The reconstructions of
last layer only keeps the most discriminate parts. The last
row shows an interesting case where mouse head is kept
as discriminative part for prediction mousetrap, this is due
to mouse and mousetrap have high co-occurrence rate in
images, and mouse is more discriminant in this image.

5. Comparisons between CNNs
In this section, we attempt to compare the prediction pro-
cesses of VGG-16 with AlexNet through analyzing visual
information kept in different layers.

Figure 5 shows the representation sparsity of all convo-
lutional layers and max-pooling layers for VGG-16 and
AlexNet. The sparsity is measured by the proportion of
zero activations of a layer on ILSVRC2012 validation set.
In general, the sparsity increases from low layers to high
layers. To be noted that the decrease of sparsity in max-
pooling layer is caused by the max operator which de-
creases the number of zero activations. The high layers of
VGG-16 are with higher sparsity than AlexNet, which also
demonstrates VGG-16 is with better representation ability

and removing unrelated information.

Previous section has shown the process of visual informa-
tion extraction using visual results reconstructed from the
internal representations of different layers. It was shown
that unrelated parts are gradually removed and the discrim-
inative parts gradually stand out. In Figure 6, we compare
the process carried by VGG-16 and AlexNet through sever-
al examples. In contrast to VGG-16, AlexNet retains more
unrelated background information in last convolutional lay-
er, which often disturbs the final prediction.

6. Conclusion
In this paper, we probe the internal work mechanism of C-
NN via visualizing the internal representations formed by
different layers in two aspects. The visualizations of repre-
sentation spaces constructed from different layers demon-
strate the ability of CNN in sorting patterns gradually from
low level to high level. The visualizations of the recon-
structed images from representations of different layers
show CNN’s ability in gradually extracting discriminan-
t information. Through comparison of CNNs with differ-
ent depths, it shows that deeper CNN is better at extracting
the discriminant information, which improves the predic-
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Figure 5. The sparsity of each layer. The left part is the sparsity of VGG-16 and right part is the sparsity of AlexNet.

tion performance.
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Figure 6. Comparison of visual information extraction. The extraction process of VGG-16 and AlexNet are visualized for four exemplar
images. For each exemplar image, the first row show the input image followed by the reconstructed images of different layers of
VGG-16, the second row shows the reconstructed images of different layers of AlexNet followed by the top-5 prediction results on the
image.


