
Batch-Normalized Maxout Network in Network

Jia-Ren Chang FOLLOWWAR.CS00G@NCTU.EDU.TW

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

Yong-Sheng Chen YSCHEN@CS.NCTU.EDU.TW

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

Abstract
This paper presents a novel deep architecture,
Maxout network In Network (MIN), which can
enhance model discriminability and facilitate the
process of information abstraction within the re-
ceptive field. The proposed network slides max-
out multilayer perceptron to learn a variety of
piecewise linear activation functions and to me-
diate the problem of vanishing gradients that can
occur when using rectifier units. Moreover, batch
normalization is applied to reduce the saturation
of maxout units by pre-conditioning the model
and dropout is applied to prevent overfitting. Fi-
nally, average pooling is used in all pooling lay-
ers, which can regularize the batch-normalized
MIN architecture and aggregate its resultant sta-
ble features in order to facilitate information ab-
straction while accommodating different object
positions. Our experiments demonstrated the im-
proved or comparable classification performance
when the MIN model was applied to MNIST,
CIFAR-10, CIFAR-100, and SVHN datasets.

1. Introduction
Deep convolutional neural networks (CNNs) (Krizhevsky
et al., 2012) have recently been applied to large image
datasets, such as MNIST (LeCun et al., 1998), CIFAR-
10/100 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al.,
2011), and ImageNet (Deng et al., 2009) for image clas-
sification (Hinton et al., 2012). A deep CNN is able to
learn basic filters automatically and combine them hierar-
chically to enable the description of latent concepts for pat-
tern recognition. In (Zeiler & Fergus, 2014), Zeiler et al.
illustrated how deep CNN organizes feature maps and the
discrimination among classes.

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Despite the advances that have been made in the develop-
ment of this technology, many issues related to deep learn-
ing remain, including: (1) model discriminability and the
robustness of learned features in early layers (Zeiler & Fer-
gus, 2014); (2) the vanishing gradients and saturation of
activation units during training (Glorot & Bengio, 2010);
and (3) limited training data, which may lead to overfitting
(Srivastava et al., 2014).

Because data are usually distributed on nonlinear mani-
folds, they are not separable by linear filters. For enhanc-
ing model discriminability, the Network In Network (NIN)
(Lin et al., 2014) model uses a sliding micro neural net-
work, multilayer perceptron (MLP), to increase the nonlin-
earity of local patches in order to enable the abstraction of
greater quantities of information within the receptive fields.
Similarly, Deeply Supervised Nets (DSN) (Lee et al., 2015)
provides companion objective functions to constrain hid-
den layers, such that robust features can be learned in the
early layers of a deep CNN structure.

The problem of vanishing gradients is essentially the
shrinking of gradients backward through hidden layers.
Some activation functions, such as sigmoid, are suscepti-
ble to vanishing gradients and saturation during the train-
ing of deep networks, due to the fact that higher hidden
units become saturated at -1 or 1. Current solutions involve
the use of rectified linear units (ReLU) to prevent vanishing
gradients (Krizhevsky et al., 2012; Maas et al., 2013; Nair
& Hinton, 2010) because ReLU activates above 0 and its
partial derivative is 1. Thus gradients flow through while
ReLU activates. Unfortunately, ReLU has a potential dis-
advantage. The constant 0 will block the gradient flow-
ing through inactivated ReLUs, such that some units may
never activate. Recently, the maxout network (Goodfel-
low et al., 2013) provided a remedy to this problem. Even
when maxout output is 0, this value is from a maxout hid-
den unit and this unit may be adjusted to become positive
afterwards. Another issue involves changes of data distri-
bution during the training of deep networks that are likely
to saturate the activation function. This changed data dis-
tribution can move input data into the saturated regime of

Batch-Normalized Maxout Network in Network

the activation function and slow down the training process.
This phenomenon is referred to as internal covariate shift
(Shimodaira, 2000). Ioffe et al. (Ioffe & Szegedy, 2015)
addressed this problem by applying batch normalization to
the input of each layer.

In this study, we aimed to increase nonlinearity within local
patches and alleviate the problem of vanishing gradients.
Based on the NIN (Lin et al., 2014) structure, we employ
a maxout MLP for feature extraction and refer to the pro-
posed model as Maxout network In Network (MIN). The
MIN model uses batch normalization to reduce saturation
and uses dropout to prevent overfitting. To increase the ro-
bustness to spatial translation of objects, furthermore, aver-
age pooling is applied in all pooling layers to aggregate the
essential features obtained by maxout MLP.

2. Design of Deep Architecture
This section presents previous works related to the pro-
posed MIN structure, including NIN, Maxout Network, and
batch normalization, followed by the design of the MIN ar-
chitecture.

2.1. NIN

The NIN model (Lin et al., 2014) uses the universal ap-
proximator MLP for the extraction of features from local
patches. Compared to CNN, MLP, wherein an ReLU is
used as the activation function, enables the abstraction of
information that is more representative for the latent con-
cepts. The NIN model introduced the mlpconv layer which
consists of a linear convolutional layer and a two-layer
MLP. The calculation performed by the mlpconv layer is
as follows:

f1
i,j,n1

= max
(
w1

n1

T
xi,j + bn1 , 0

)
,

f2
i,j,n2

= max
(
w2

n2

T
f1i,j + bn2 , 0

)
,

f3
i,j,n3

= max
(
w3

n3

T
f2i,j + bn3

, 0
)

, (1)

where (i, j) is the pixel index in the feature maps, xi,j

represents the input patch centered at location (i, j), and
n1, n2, and n3 are used to index the channels of the feature
maps. From another perspective, the mlpconv layer can be
viewed as equivalent to a cascaded cross-channel paramet-
ric pooling layer on a convolutional layer. The cascaded
cross-channel parametric pooling layer linearly combines
feature maps and then passes through ReLUs, thereby al-
lowing the cross-channel flow of information.

However, the constant 0 will block the gradients flowing
through the inactivated ReLUs and these ReLUs will not
be updated during the training process. In this work, we

adopted another universal approximator, maxout MLP, to
overcome this problem.

2.2. Proposed MIN Architecture

The NIN (Lin et al., 2014) has capability to abstract rep-
resentative features within the receptive field and thereby
achieve good results in image classification. As described
in Section 2.1, NIN uses ReLU as the activation function
in mlpconv layer. In this study, we replaced the ReLU ac-
tivation functions in the two-layer MLP in NIN with the
maxout units to overcome the vanishing gradient problem
commonly encountered when using ReLU. Furthermore,
we applied batch normalization immediately after convo-
lutional calculation to avoid the covariate shift problem
caused by the changes of data distribution. Specifically, we
removed the activation function of the convolutional layer,
thereby rendering it a pure feature extractor. The architec-
ture of the proposed MIN model is presented in Figure 1.
Feature maps in a MIN block are calculated as follows:

f1
i,j,n1

= BN
(
w1

n1

T
xi,j + b1nj

)
,

f2
i,j,n2

= max
m∈[1,k1]

(
BN

(
w2

nm

T
f1i,j + b2nm

))
,

f3
i,j,n3

= max
m∈[1,k2]

(
BN

(
w3

nm

T
f2i,j + b3nm

))
, (2)

where BN(·) denotes the batch normalization layer, (i, j)
is the pixel index in the feature map, xi,j represents the
input patch centered at location (i, j), and n is used to in-
dex the channels of the feature maps that are constructed by
taking the maximum across k maxout hidden pieces. Mont-
ufar et al. [18] demonstrated that the complexity of maxout
networks increases with the number of maxout pieces or
layers. By increasing the number of maxout pieces, the
proposed model expands the ability to capture the latent
concepts for various inputs.

From another perspective, a MIN block is equivalent to
a cascaded cross-channel parametric pooling layer and a
cross-channel max pooling on a convolutional layer. The
MIN block linearly combines feature maps and selects the
combinations that are the most informational to be fed into
the next layer. The MIN block reduces saturation by apply-
ing batch normalization and makes it possible to encode in-
formation on pathways or in the activation patterns of max-
out pieces (Wang & JaJa, 2014). This makes it possible to
enhance the discrimination capability of deep architectures.

3. Experiments
In the following experiments, the proposed method was
evaluated using four benchmark datasets: MNIST (Le-
Cun et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009),

Batch-Normalized Maxout Network in Network

Softmax

MIN block MIN block MIN block

Convolutional

Layer

BN BN Maxout BN Maxout Pooling

Figure 1. The architecture of the proposed MIN model.

CIFAR-100 (Krizhevsky & Hinton, 2009), and SVHN
(Netzer et al., 2011). The proposed model consists of three
stacked MIN blocks followed by a softmax layer. A MIN
block includes a convolutional layer, a two-layer maxout
MLP, and a spatial pooling layer. Dropout is applied be-
tween MIN blocks for regularization. Table 1 details the
parameter settings which, for the sake of a fair comparison,
are the same as those used in NIN (Lin et al., 2014). The
network was implemented using the MatConvNet (Vedaldi
& Lenc, 2014) toolbox in the Matlab environment. All
models were trained with stochastic gradient descent. The
momentum for all datasets were fixed to 0.9. The weight
decay for all datasets were fixed to 0.0005. The mini-batch
size for all datasets were set to 100.

3.1. MNIST

The MNIST dataset (LeCun et al., 1998) consists of hand-
written digit images, 28 × 28 pixels in size, organized into
10 classes (0 to 9) with 60,000 training and 10,000 test
samples. Testing on this dataset was performed without
data augmentation. The model was trained for 79 epochs
(5 hours on a GeForce Titan X). The first column of Table 1
indicates that our model has 0.45 million parameters. Table
2 compares the results obtained in this study with those ob-

tained in previous works. Despite the fact that many meth-
ods can achieve very low error rates for MNIST dataset, we
achieved a test error rate of 0.24%, which set a new state-
of-the-art performance without data augmentation.

3.2. CIFAR-10

The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) con-
sists of color natural images, 32 × 32 pixels in size, from
10 classes with 50,000 training and 10,000 test images.
For this dataset, we applied global contrast normalization
and whitening in accordance with the methods outlined
in (Goodfellow et al., 2013). To enable a comparison
with previous works, the dataset was augmented by zero-
padding 2 pixels on each side, which resulted in images
36 × 36 pixels in size. We then performed random corner
cropping back to 32 × 32 pixels as well as random flipping
on the fly during training. The model was trained for 222
epochs (10 hours on a GeForce Titan X). The middle col-
umn of Table 1 indicates that our model has 1.6 million pa-
rameters. Table 3 compares our results with those obtained
in previous works. We obtained an error rate of 7.85%
without data augmentation and 6.75% with data augmen-
tation. These are the improved or comparable results. We
also trained the model (0.95 millons parameters as shown

Batch-Normalized Maxout Network in Network

Table 1. Parameter settings of the proposed MIN architecture used
in the experiments. The convolutional kernel is defined as (height)
× (width) × (number of units). Below, we present the stride (st.),
padding (pad) and batch normalization (BN) of the convolution
kernel. In maxout MLP layers (MMLP), k indicates the number
of maxout pieces used in one maxout unit. A softmax layer is
applied to the last layer in the model (not shown here). The first
column lists the parameters used in MNIST, the middle column
lists those used in CIFAR-10/100 and SVHN, where as the last
column lists that the model has same number of parameters with
original NIN.

MNIST CIFAR-10(100)

SVHN

CIFAR-10

same # params

Conv-1 5x5x128 / st. 1 / pad 2

 BN

5x5x192 / st. 1/ pad 2

BN

5x5x96 / st. 1/ pad 2

BN

MMLP-1-1 1x1x96 / st. 1 / pad 0

k=5 / BN

1x1x160 / st. 1 / pad 0

k=5 / BN

1x1x96 / st. 1 / pad 0

k=5 / BN

MMLP-1-2 1x1x48 / st. 1 / pad 0

k=5 / BN

1x1x96 / st. 1 / pad 0

k=5 / BN

1x1x96 / st. 1 / pad 0

k=5 / BN

3x3 avg. pool / st.2

dropout 0.5

3x3 avg. pool / st.2

dropout 0.5

3x3 avg. pool / st.2

dropout 0.5

Conv-2 5x5x128 / st. 1 / pad 2

BN

5x5x192 / st. 1 / pad 2

BN

5x5x108 / st. 1 / pad 2

BN

MMLP-2-1 1x1x96 / st. 1 / pad 0

k=5 / BN

1x1x192 / st. 1 / pad 0

k=5 / BN

1x1x192 / st. 1 / pad 0

k=5 / BN

MMLP-2-2 1x1x48 / st. 1 / pad 0

k=5 / BN

1x1x192 / st. 1 / pad 0

k=5 / BN

1x1x192 / st. 1 / pad 0

k=5 / BN

3x3 avg. pool / st.2

dropout 0.5

3x3 avg. pool / st.2

dropout 0.5

3x3 avg. pool / st.2

dropout 0.5

Conv-3 3x3x128 / st. 1 / pad 1

BN

3x3x192 / st. 1 / pad 1

BN

3x3x108 / st. 1 / pad 1

BN

MMLP-3-1 1x1x96 / st. 1 / pad 0

k=5 / BN

1x1x192 / st. 1 / pad 0

k=5 / BN

1x1x192 / st. 1 / pad 0

k=5 / BN

MMLP-3-2 1x1x10 / st. 1 / pad 0

k=5 / BN

1x1x10(100) / st. 1 / pad 0

k=5 / BN

1x1x10 / st. 1 / pad 0

k=5 / BN

7x7 avg. pool 8x8 avg. pool 8x8 avg. pool

in the third column of Table 1) having the same number of
parameters with the NIN method (0.97 million parameters),
and obtained the test error of 8.39%.

3.3. CIFAR-100

The CIFAR-100 dataset (Krizhevsky & Hinton, 2009) is
the same size and format as the CIFAR-10; however, it con-
tains 100 classes. Thus, the number of images in each class
is only one tenth of that of CIFAR-10. As a result, this
dataset is far more challenging. The model was trained for
341 epochs (15 hours on a GeForce Titan X). The middle
column of Table 1 indicates that our model has 1.69 million
parameters. This resulted in an error rate of 28.86% with-
out data augmentation, which represents the state-of-the-
art performance. Table 4 presents a summary of the best
results obtained in previous works and the current work.

Table 2. Comparison of test errors on MNIST without data aug-
mentation, in which k denotes the number of maxout pieces.

Method # params Error (%)
NIN (Lin et al., 2014) 0.35 M 0.45
DSN (Lee et al., 2015) 0.35 M 0.39
RCNN-96 (Liang & Hu,
2015)

0.67 M 0.31

MIN (k=5) 0.45 M 0.24

Table 3. Comparison of test errors on CIFAR-10 dataset. * denote
that the model has same number of parameters with NIN.

Method # params Error (%)
No data augmentation
NIN (Lin et al., 2014) 0.97 M 10.41
DSN (Lee et al., 2015) 0.97 M 9.69
RCNN-160 (Liang & Hu,
2015)

1.86 M 8.69

MIN (k=5)* 0.95 M 8.39
MIN (k=5) 1.60 M 7.85
Data augmentation
NIN (Lin et al., 2014) 0.97 M 8.81
DSN (Lee et al., 2015) 0.97 M 8.22
RCNN-160 (Liang & Hu,
2015)

1.86 M 7.09

MIN (k=5) 1.60 M 6.75
Fractional MP (1 test) (Gra-
ham, 2014)

> 5 M 4.5

3.4. SVHN

The SVHN dataset consists of color images of house num-
bers (32 × 32 pixels) collected by Google Street View.
There are 73,257 and 531,131 digits in the training and
additional sets, respectively. In accordance with previous
works (Goodfellow et al., 2013), we selected 400 sam-
ples per class from the training set and 200 samples per
class from the additional set for validation. The remaining
598,388 images were used for training. Moreover, there are
26,032 digits in the test set. We preprocessed the dataset
using local contrast normalization, in accordance with the
method outlined by Goodfellow et al. (Goodfellow et al.,
2013). For this dataset, the initial learning rate was set to
be 0.1. The model was trained for 27 epochs (14 hours on
a GeForce Titan X). The middle column of Table 1 indi-
cates that our model has 1.6 million parameters. Without
data augmentation, we achieved a test error rate of 1.81%,
which is comparable to the best result obtained in previous
works. Table 5 presents a comparison of our test results
with those obtained in recent studies.

Batch-Normalized Maxout Network in Network

Table 4. Comparison of test errors on CIFAR-100 dataset
Method # params Error (%)
NIN (Lin et al., 2014) 0.98 M 35.68
DSN (Lee et al., 2015) 0.98 M 34.57
RCNN-160 (Liang & Hu,
2015)

1.87 M 31.75

Fractional MP (1 test) (Gra-
ham, 2014)

> 5 M 31.2

MIN (k=5) 1.69 M 28.86

Table 5. Comparison of test errors on SVHN. Note that Dropcon-
net (Wan et al., 2013) uses data augmentation and multiple model
voting

Method # params Error (%)
NIN (Lin et al., 2014) 1.98 M 2.35
Dropconnect (Wan et al.,
2013)

- 1.94

DSN (Lee et al., 2015) 1.98 M 1.92
MIN (k=5) 1.60 M 1.81
RCNN-192 (Liang & Hu,
2015)

2.67 M 1.77

3.5. Model capacity

We tested the proposed method on CIFAR-10 dataset using
various numbers of maxout pieces. The left panel of Figure
2 illustrates how increasing the number of maxout pieces
can improve the performance of our method, by which
point the MIM model has already reached saturation. This
figure also shows the saturation of maxout units due to the
growing number of maxout pieces without batch normal-
ization. We also compared the results of our method with
those of batch normalized NIN using the same number of
parameters. The right panel of Figure 2 illustrates the train-
ing and test error curves under three conditions: MIN with
the same number of hidden units (7.85%, final test error),
MIN with the same number of parameters (8.39%, final test
error), and the batch normalized NIN method (8.94%, final
test error). Using the same number of parameters, the pro-
posed method performs better than NIN.

3.6. Regularization of average pooling in MIN

Most of the previous methods used max pooling for down
sampling. Max pooling extracts the features within local
patches that are the most representative of the class. In
this study, the MIN block is able to abstract representative
information from every local patch such that more discrim-
inable information is embedded in the feature map. Thus,
we are able to use spatial average pooling in each pooling
layer to aggregate local spatial information. We compared
the results using average pooling in the first two pooling

layers with those using max pooling, whereas the last pool-
ing layer was fixed to global average pooling. Figure 3
presents the training and test error curves associated with
different pooling methods using the NIN and MIN meth-
ods. The use of average pooling in all pooling layers was
shown particularly effective with batch normalized NIN ar-
chitecture. Both batch normalized NIN and MIN methods
performed better with average pooling than with max pool-
ing. But the original NIN method performed better with
max pooling than with average pooling. The reason is that
batch normalization not only can reduce the internal co-
variance shift but also can regularize models. The features
in the same channel are more stable and thus can benefit
average pooling.

3.7. Visualization of learned features

Average pooling was applied in all pooling layers to fa-
cilitate the abstraction of input images. In (Zhou et al.,
2015), they showed that global average pooling can facil-
itate weakly-supervised object localization. We followed
(Zhou et al., 2015) to extract feature maps from models
trained using CIFAR-10 to illustrate these effects. Fig-
ure 4 presents examplar images and their corresponding
feature maps, which were selected from the CIFAR-10 test
set. For each method, the first column illustrates the se-
lected feature maps related to the objects per se, whereas
the second column shows the selected feature maps for the
background, and the last column show the corresponding
class activation map (CAM). Note that only the top 50%
of the data are shown in this figure while only top 10% are
represented in CAM. The learned feature maps produced
using the proposed MIN method appear to be more intu-
itive than the NIN method when dealing with both fore-
ground and background. Compared to NIN, moreover, the
MIN method revealed more obviously class-specific units,
showing large activation for a specific class. This finding
demonstrates the effectiveness of MIN and its potential for
object segmentation.

Figure 5 presents examplar images selected from SVHN
test set and their corresponding feature maps extracted in
the last convolutional layer by using the MIN and NIN
models. Only the top 10% of the data are presented. Note
that the NIN model in this experiment had the same number
of hidden units as the MIN model and achieved the test er-
ror of 2.36%. One of the major difficulties in the classifica-
tion on SVHN dataset is that there are a large portion of im-
ages containing distractors, which may confuse the model
during training. After all, the distractors are also digits and
should be recognized by the model during testing as well as
the targeted digit in the center. Therefore, the model should
recognize the distractors as the runners-up, besides classi-
fying the targeted digit as the first candidate. In Figure 5,
we presented the images containing targeted digits from 0

Batch-Normalized Maxout Network in Network

0%

5%

10%

15%

20%

1 51 101 151 201

er
ro

r

epoch

MIN+BN same # of hidden units

MIN+BN same # of params

original NIN+BN
7%

8%

9%

10%

11%

12%

2 3 4 5

T
es

t
er

ro
r

o
n

 C
IF

A
R

-1
0

Number of maxout pieces

MIN without BN MIN with BN

MIM with BN

Figure 2. Left) Performance related to the number of maxout pieces. We fixed the hyper-parameters when training the MIN model with
different maxout pieces. Our method dramatically reduces test error of CIFAR-10 dataset with increasing the number of maxout pieces.
Right) The training (dotted lines) and test (solid lines) curves of MIN and NIN with batch normalization. With the same number of
parameters, our method (8.39% test error) performs better than the batch normalized NIN method (8.94% test error). Errors greater than
20% are not shown here.

0%

5%

10%

15%

20%

1 51 101 151 201

er
ro

r

epoch

NIN-max NIN-avg

NIN+BN-max NIN+BN-avg

MIN+BN-max MIN+BN-avg

Figure 3. Comparison of training (dotted lines) and test (solid
lines) errors on CIFAR-10 dataset without data augmentation us-
ing max/average pooling in the first two pooling layers using three
models: original NIN, batch normalized NIN, and MIN. Errors
great than 20% are not shown here.

to 9 and distractors on the side and highlighted the first and
second candidates of the output determined by the softmax
layer. These results show that the proposed approach is able
to recognize distractors in input images with high accuracy.
To demonstrate the localizability of the MIN method, some
images selected from SVHN test set as well as their corre-
sponding CAMs are illustrated in Figure 6. We showed that
the proposed MIN is better than NIN in the localization of
the discriminative image regions.

This indicates that the MIN can robustly preserve infor-
mation of each category because of the pathway encoding

in maxout MLP and spatial average pooling. When con-
volutional filters slide onto the distractor, the MIN model
can extract features of the distractor along its own path-
way. The MIN model downscale the feature maps by us-
ing spatial average pooling and this pooling method keeps
all information of a local patch, whereas max pooling only
passes the maximal part. These results suggest the possibil-
ity of applying the MIN method to multiple object recog-
nition using a more comprehensive image dataset, such as
ImageNet.

4. Conclusions
This paper presents a novel deep architecture, MIN. A
MIN block, consisting of a convolutional layer and a two-
layer maxout MLP, is used to convolve the input and av-
erage pooling is applied in all pooling layers. The pro-
posed method outperforms other methods because of the
following improvements: the MIN block facilitates the in-
formation abstraction of local patches, batch normaliza-
tion prevents covariate shift, and average pooling acts as
a spatial regularizer tolerating changes of object positions.
Our experiments showed that the MIN method achieves im-
proved or comparable performance on the MNIST, CIFAR-
10, CIFAR-100, and SVHN datasets. Moreover, the ex-
tracted feature maps demonstrate the efficacy of categori-
cal representation by using the MIN method, as well as its
potential to multiple object recognition. Source code of the
proposed MIN method can be found on GitHub.

https://github.com/JiaRenChang/Batch_Normalized_Maxout_NIN

Batch-Normalized Maxout Network in Network

Pool 1

Input Unit 25 Unit 96

CAM

Unit 82 Unit 96

Unit 62 Unit 60

Unit 25 Unit 43

Unit 38 Unit 2

Pool 1

Input Unit 43 Unit 50

CAM

Unit 27 Unit 63

Unit 62 Unit 2

Unit 7 Unit 84

Unit 86 Unit 12Unit 79

Pool 1

Unit 82 Unit 94

CAM

Unit 21 Unit 52

Unit 84 Unit 55

Unit 69 Unit 94

Unit 15

Pool 1

Unit 94 Unit 21

CAM

Unit 23 Unit 39

Unit 63 Unit 96

Unit 51 Unit 78

Unit 73 Unit 94

MIN NIN MIN NIN

Figure 4. Visualization of learned feature maps before the first pooling layer obtained using the MIN and NIN methods. Those two
method were both batch normalized. Only the top 50% of the data are presented. Compared to NIN, the MIN method revealed more
obviously class-specific units, showing large activation for a specific class.

Batch-Normalized Maxout Network in Network

1 2 3 4 5 6 7 8 9 0

First candidate Second candidate

(a) Batch normalized MIN (b) Batch normalized NIN

1 2 3 4 5 6 7 8 9 0

Figure 5. Visualization of the learned feature maps before the global average pooling layer obtained using the MIN (1.81% test error)
and NIN (2.36% test error) methods in our training. Only the top 10% of the data are presented. The first and second candidates of the
output are highlighted in red and green boxes.

Global Average Pooling; Label: 1

Input

NINMIN

Global Average Pooling; Label: 3

Input

MIN NIN

Global Average Pooling; Label: 6

Input

MIN NIN

Global Average Pooling; Label: 9

Input

MIN NIN

Figure 6. The potential of object detection by using the MIN method. We illustrated the results of global average pooling layer, as well
as their corresponding class labels. Only the top 10% of the data are presented. These results demonstrate the possibility of applying the
proposed MIN method to multiple object detection.

Batch-Normalized Maxout Network in Network

References
Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai,

and Fei-Fei, Li. Imagenet: A large-scale hierarchical
image database. In CVPR09, pp. 248–255. IEEE, 2009.

Glorot, Xavier and Bengio, Yoshua. Understanding the
difficulty of training deep feedforward neural networks.
In International conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Goodfellow, Ian J., Warde-Farley, David, Mirza, Mehdi,
Courville, Aaron C., and Bengio, Yoshua. Maxout net-
works. In Proceedings of the 30th International Con-
ference on Machine Learning (ICML 2013), volume 28
of JMLR Proceedings, pp. 1319–1327. JMLR.org, 2013.
URL http://dblp.uni-trier.de/db/conf/
icml/icml2013.html#GoodfellowWMCB13.

Graham, Benjamin. Fractional max-pooling. arXiv
preprint arXiv:1412.6071, 2014.

Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Improving
neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012. URL http:
//arxiv.org/abs/1207.0580.

Ioffe, Sergey and Szegedy, Christian. Batch normal-
ization: Accelerating deep network training by reduc-
ing internal covariate shift. In ICML, volume 37
of JMLR Proceedings, pp. 448–456. JMLR.org, 2015.
URL http://dblp.uni-trier.de/db/conf/
icml/icml2015.html#IoffeS15.

Krizhevsky, Alex and Hinton, Geoffrey. Learning multiple
layers of features from tiny images, 2009.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Lee, Chen-Yu, Xie, Saining, Gallagher, Patrick, Zhang,
Zhengyou, and Tu, Zhuowen. Deeply-supervised nets.
In Proceedings of AISTATS 2015, 2015.

Liang, Ming and Hu, Xiaolin. Recurrent convolutional
neural network for object recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

Lin, Min, Chen, Qiang, and Yan, Shuicheng. Network in
network. International Conference on Learning Rep-
resentations, abs/1312.4400, 2014. URL http://
arxiv.org/abs/1312.4400.

Maas, Andrew L, Hannun, Awni Y, and Ng, Andrew Y.
Rectifier nonlinearities improve neural network acoustic
models. In Proc. ICML, volume 30, 2013.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units
improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814, 2010.

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco,
Alessandro, Wu, Bo, and Ng, Andrew Y. Reading dig-
its in natural images with unsupervised feature learning.
In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, pp. 5. Granada, Spain,
2011.

Shimodaira, Hidetoshi. Improving predictive inference un-
der covariate shift by weighting the log-likelihood func-
tion. Journal of statistical planning and inference, 90
(2):227–244, 2000.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Vedaldi, Andrea and Lenc, Karel. Matconvnet-
convolutional neural networks for matlab. arXiv preprint
arXiv:1412.4564, 2014.

Wan, Li, Zeiler, Matthew, Zhang, Sixin, Cun, Yann L,
and Fergus, Rob. Regularization of neural networks us-
ing dropconnect. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML 2013),
pp. 1058–1066, 2013.

Wang, Qi and JaJa, Joseph. From maxout to channel-out:
Encoding information on sparse pathways. In Artificial
Neural Networks and Machine Learning–ICANN 2014,
pp. 273–280. Springer, 2014.

Zeiler, Matthew D and Fergus, Rob. Visualizing and under-
standing convolutional networks. In Computer Vision–
ECCV 2014, pp. 818–833. Springer, 2014.

Zhou, Bolei, Khosla, Aditya, Lapedriza, Agata, Oliva,
Aude, and Torralba, Antonio. Learning deep fea-
tures for discriminative localization. arXiv preprint
arXiv:1512.04150, 2015.

http://dblp.uni-trier.de/db/conf/icml/icml2013.html#GoodfellowWMCB13
http://dblp.uni-trier.de/db/conf/icml/icml2013.html#GoodfellowWMCB13
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400

