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Abstract
Even when parameters of a deep neural network
are fully known, it is still not always clear how
and why a given network “works,” and how neu-
rons in the network contribute to overall network
performance. In this paper, we propose a suite of
tools for visualizing and characterizing deep net-
works that aims to reveal their key representation
properties. We present preliminary results with a
large collection of randomly generated networks
to explore how representation properties relate to
network depth and performance, and we find that
these properties can explain a substantial fraction
of variation in overall network performance.

1. Introduction
Deep convolutional neural networks have increasingly be-
come a core tool in computer vision in recent years, deliv-
ering groundbreaking performance across a wide range of
challenging datasets. Their success is commonly explained
by the notion that deeper networks have greater “represen-
tation power,” even though what exactly this means in prac-
tice is not always well-defined.

In this work, we focused on developing empirical tools to
quantify the properties of representations within convolu-
tional neural networks, and allow statistical comparison of
these properties. Related work is briefly summarized next.
(Erhan et al., 2010; Le et al., 2010; 2012; Zeiler & Fergus,
2014; Simonyan et al., 2014; Yosinski et al., 2015) showed
that deep neurons are most responsive to complex patterns,
including object-part- and even whole-object-resembling
patterns, which are also called their optimal stimuli. (Ma-
hendran & Vedaldi, 2015; Wang et al., 2015) generalized
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such analysis onto groups of neurons. Besides the optimal
stimulus, (Goodfellow et al., 2009; Zeiler & Fergus, 2014;
Fawzi & Frossard, 2015) also studied the invariance and
selectivity of neurons using parametric deformations of im-
ages, like translation, rotation, scaling, etc., while (Berkes
& Wiskott, 2006; Le et al., 2010) used Hessian informa-
tion and (Bakry et al., 2016) used kernel analysis. (Lenc &
Vedaldi, 2015) also studied more advanced properties like
equivariance and equivalence.

Here, we describe a suite of quantitative tools that allow us
to compare representation properties across different layers
and different networks using statistical tests. With statisti-
cal testing, not only descriptions about their differences can
be made more rigorously, minor differences that are harder
to tell can also emerge through such an approach. As a first
test of our methods, we focused on algorithms from (Cox
& Pinto, 2011) where a large number of shallow and min-
imally deep networks were randomly generated and char-
acterized, as in this simple setup, representation properties
and differences that had been observed before can be easily
verified.

Interestingly, our approach not only statistically confirmed
some known properties, but also identified at least one key
difference which has not been reported before—instead of
invariance, selectivity is actually the most significant differ-
ence between shallow vs. deep representations. When used
to compare deep representations against their performance
on image recognition (face pair matching), our methods ex-
plained 71% of the variance of the performance using our
representation measures (i.e. which factors make a network
perform well) with strong statistical confidence. Invertibil-
ity, in this case, turned out to be the most important prop-
erty.

The rest of this paper is organized as follows. All proposed
methods are detailed in Sec. 2. Experimental setup, viz. the
networks and dataset used in this work, is briefly described
in Sec. 3. Results for comparing representations using our
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Figure 1. Overview of methods. On the constant-energy spherical
constraint, the optimal stimulus (1) of a representation is first iter-
atively searched (Hansen & Ostermeier, 2001) and quantified us-
ing (4) and (5). Then, the invariant (2) and selective stimuli (3) at
distances 0.1π to 0.5π away from the optimal stimulus, forming
the invariance and selectivity paths (dashed red and blue curves),
are searched as well and quantified using (6), (7), (8) and (9). All
quantitative measures are then compared using permutation tests
(Sec. 2.3).

methods are in Sec. 4. Implications of our major findings,
their potential applications and other future directions are
addressed in Sec. 4 and 5. More results can be found in the
longer draft version (Tsai & Cox, 2015) of this paper too.

2. Methods
Given a network f , our methods extensively utilize both
first-order (i.e. optimal stimulus related) and second-order
(i.e. invariance and selectivity related) characterization for
its visual representations (partly generalized and improved
from previous papers). Throughout this paper, r = f (x) is
called a scalar representation (i.e. r ∈ R) when considering
single neurons, and a vector representation (i.e. r ∈ RM )
when considering multiple neurons. We also call f a fitness
function and its value fitness. Figure 1 depicts an overview
of our methods.

2.1. Representation Search

The optimal stimuli for both scalar and vector representa-
tions are defined in (1) subject to ‖x‖ = E, where E is set
to the task-related image’s average energy. When consider-
ing the vector representation, it is equivalent to maximizing
the response of an “auxiliary neuron” tuned to certain ref-
erence stimulus x̃ (e.g. a natural image).1

1Although a vector representation’s optimal stimulus can also
be defined closer to a scalar representation’s, e.g. as the stimulus

x̂ =

arg max
x

f(x) if f(x) ∈ R

arg max
x

e−‖f(x)−f(x̃)‖ if f(x) ∈ RM
(1)

x+
δ =


arg max

xδ

f(xδ) if f(x) ∈ R

arg max
xδ

e−‖f(xδ)−f(x̂)‖ if f(x) ∈ RM
(2)

x−δ =


arg min

xδ

f(xδ) if f(x) ∈ R

arg min
xδ

e−‖f(xδ)−f(x̂)‖ if f(x) ∈ RM
(3)

With respect to the optimal stimulus x̂, the invariant and se-
lective stimuli are defined in (2) and (3) respectively, where
0 < δ ≤ π

2 , subject to ‖xδ‖ = E and 〈xδ, x̂〉 = E2 cos (δ).
The distance constraint, while being simple and linear, en-
forces exploration of the fitness landscape, which is one of
the main differences compared to (Erhan et al., 2010). The
invariance path

{
x+
δ

}
and selectivity path

{
x−δ
}

are then
searched through multiple runs of maximization and mini-
mization on discretized δ ∈ {0.1π, 0.2π, 0.3π, 0.4π, 0.5π}
as the distance constraints shown in Fig. 1, where each run
is initialized with the result from the previous run (and the
0.1π run directly with optimal stimulus x̂) to increase the
path continuity and searching speed. This method is more
generic than using parametric deformations, and more effi-
cient than using the Hessian. Similarly, it can be performed
with respect to certain reference stimulus x̃ (especially for
vector representations) where the invariance and selectivity
of the auxiliary neuron are characterized equivalently.

2.2. Representation Quantification

Complexity: It is often observed that deeper neurons hold
more complex optimal stimuli, as extensively visualized in
(Zeiler & Fergus, 2014; Yosinski et al., 2015). However,
most previous work only provided qualitative results. With
the ‖x‖ = E constraint, we can directly define its spectral
complexity measure as the L1 norm of the Fourier power
spectrum of the optimal stimulus, i.e.

Complexity = ‖F(x̂)‖1 . (4)

Since all stimuli have the same ‖F(x̂)‖ (L2 norm), higher
L1 norm also implies higher non-sparsity (i.e. complexity),
as simple stimuli (e.g. sine gratings or Gabor filters) usually
have sparse Fourier power spectrum.

Invertibility: As demonstrated by previous papers, to un-
derstand the meaning of a representation r formed by the
network f , one can simply perform the inversion f−1 (r),

maximizing the sum of all responses, in practice we found such a
definition usually led to much less informative results.
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e.g. using (1), to visualize the properties of this representa-
tion. To further quantify this process, we perform multiple
inversions of a representation and define

Invertibility =
1

n

n∑
i=1

SSIM (x̃, x̂i) (5)

as the average structural similarity (Wang et al., 2004) be-
tween the reference stimulus x̃ and n inverted stimuli from
random initialization, where n = 10 in our experiments.

Invariance & selectivity: The major advantage of search-
ing the invariance and selectivity paths is that we can sub-
sequently define a neuron’s normalized invariance and se-
lectivity easily. First we define the normalized fitness f̂(x)
as f(x)/f(x̂). Then, as δ increases on the fitness vs. dis-
tance diagram (Jones & Forrest, 1995), a neuron with high
invariance should have its invariance curve f̂(x+

δ ) staying
close to 1, and a neuron with high selectivity should have its
selectivity curve f̂(x−δ ) dropping fast (see Fig. 4). Know-
ing the fact that a single inner-product neuron (the simplest
form of neural network) has its invariance and selectivity
curves f̂(x+

δ ) = f̂(x−δ ) = cos(δ),2 we can thus easily de-
fine the baseline curve (i.e. zero invariance and selectivity
curve) as cos(δ), and

Invariance =

∫ 0.5π

0

∣∣∣cos−1(f̂(x+
δ ))− δ

∣∣∣ dδ, (6)

Selectivity =

∫ 0.5π

0

∣∣∣cos−1(f̂(x−δ ))− δ
∣∣∣dδ, (7)

being the normalized areas sandwiched between the invari-
ance and selectivity curves and the baseline curve.

Capacity: While the invariance (6) and selectivity (7) de-
fined above only characterize best solutions of

{
x+
δ

}
and{

x−δ
}

, we are also interested in how diverse different solu-
tions can be, particularly for x+

δ , as it indicates the dimen-
sionality of the “invariance subspace” (i.e. the central high
fitness region as in Fig. 1), or the capacity of the represen-
tation. To this goal, we perform multiple runs of invariant
stimulus searches, and measure

Capacity =
∥∥∥[x+

δ,1, . . . ,x
+
δ,n

]∥∥∥
∗

(8)

as the nuclear norm of the concatenation of n search results,
where n = 20 and δ = 0.1π in our experiments.

Alignment against natural images: Another very impor-
tant quality regarding invariance and selectivity is how well
they may in reality benefit visual recognition. To quantify
this, we first perform PCA on task-related natural images

2Given ‖x‖ = E, a single inner-product neuron f(x) = w>x

has optimal stimulus x̂ = E ‖w‖−1 w and all its invariance and
selectivity curves f̂(xδ) = f(xδ)/f(x̂) = cos(δ).

(e.g. face images in our experiments) to obtain its PC vec-
tor space V (i.e. eigenfaces in our case), and with respect
to a reference stimulus x̃ measure

Alignment =
1

n

n∑
i=1

‖Vxδ,i‖1 , (9)

the average sparsity of n = 20 invariant and selective stim-
uli at δ = 0.1π represented in the PC vector space. This es-
timates how likely these invariant and selective directions
are pointing onto other task-related image as well, in which
case they should benefit the task more.

2.3. Statistical Testing

Comparing two representations: Given 2 distributions of
measures A and B, we use permutation tests to determine
the significance of their difference (e.g. Bhattacharyya dis-
tance) as follows. First compute the original distance d =
dist (A,B). Then without replacement resampleA′ andB′

from A ∪ B while keeping their sizes (i.e. |A′| = |A| and
|B′| = |B|) and compute the new distance d′. Repeat this
process for a larger number of times (e.g. 106) and calculate
the probability p of d′ > d. A small p suggests the null hy-
pothesis that A and B are actually coming from the same
distribution and thus d is not significant, can be rejected.
Notation-wise, *, **, and *** mean p < 0.05, p < 0.01,
and p < 0.001, respectively.

Comparing representations against their performance:
Given a sequence of distributions of measures A1, . . . , An
and their performance numbers P1, . . . , Pn, we again use
permutation tests to determine the significance of their cor-
relation (e.g. Spearman’s rank correlation). First compute
the original correlation ρ = corr ({E [Ai]}, {Pi}) ordinar-
ily. Then resample A′i from

⋃
iAi similarly and compute

the new ρ′. Repeat this process to calculate the probabil-
ity p of ρ′ > ρ. A small p rejects the null hypothesis that
the sequence of distributions are actually the same and thus
their means do not have a significant correlation ρ against
their performance. One may use this to compare represen-
tation measures against their depths as well.

3. Experimental Setup
In our experiments, 100 shallow (i.e. one conv layer) net-
works and 100 deep (i.e. two conv layers) networks with
11× 11 and 21× 21 receptive field sizes respectively were
randomly generated following (Cox & Pinto, 2011). conv
and pool sizes were chosen from {3, 5, 7, 9} and relu
was applied right after conv. For shallow networks, 32
conv1 filters were adopted. For deep networks, number of
conv1 filters were randomly chosen from {8, 16, 32, 64}
and 32 conv2 filters were used. pool style can be av-
erage, squared, or max-like. Shallow and deep representa-
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Figure 2. Performance of shallow and deep networks on LFW-a
face pair matching. We tried to address the following 2 questions
using our methods: (1) why do deep networks perform better than
shallow networks? and (2) among all networks of the same depth,
why do certain networks perform better than others?

tions correspond to pool1 and pool2 neurons.3 Accu-
racies of linear SVMs reading out from these 100 shallow
and deep representations against the LFW-a dataset (Huang
et al., 2007; Wolf et al., 2011) are summarized in Fig. 2.

Scalar representations, i.e. totally 3,200 shallow and 3,200
deep individual neurons, were measured, when comparing
shallow and deep representations (see Sec. 4.1), where all
the optimal, invariant and selective stimulus searches were
performed twice, and the better numerical result were kept.

Vector representations, on the other hand, were used when
comparing all the 100 deep networks against their perfor-
mance. We randomly picked 16 reference stimuli (i.e. face
images), from which more runs of searches were performed
(as described in Sec. 2.2) to acquire a sufficient number of
measures for statistical comparison (see Sec. 4.2).

4. Results
4.1. Shallow vs. Deep Representations

Figure 3 demonstrates search results of shallow versus deep
representations. First, the optimal stimuli of shallow neu-
rons are visually simpler than those of deep neurons. Sec-
ond, in shallow neurons, invariance paths are mostly phase
changes and selectivity paths are leading toward meaning-
less noises (all at the same falloff rate). However, in deep
neurons, both types of paths consist of sophisticated shape
deformations. Finally, the invariance subspaces of shallow

3These representations, though being randomly generated and
relatively simple, in fact performed competitively well on LFW-
a (among neural network based algorithms without using outside
data) and served as an efficient testbed, particularly since relative,
instead of absolute performance, is of our primary interest.
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Figure 3. Visualization of shallow and deep representations. Op-
timal stimuli, invariance paths, selectivity paths, and invariance
subspaces of 4 neurons randomly selected from the best perform-
ing shallow and best performing deep networks are shown respec-
tively. Color of the boarder of an image indicates the fitness (here,
response of the neuron) elicited by the image.
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Figure 4. Fitness-distance diagrams of shallow and deep repre-
sentations. Invariance and selectivity curves of all 3,200 shallow
(panel A) and 3,200 deep neurons (panel B) are shown for com-
parison.
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Figure 5. Differences between shallow and deep representations.
Bhattacharyya distances and their significance levels between the
shallow and deep representations under the 4 measures from left
to right are 0.39∗∗∗, 0.07∗∗∗, 6.42∗∗∗ and 1.27∗∗∗ respectively.
Dark gray lines indicate the means, and light gray boxes indicate
the ranges of one standard deviations.

neurons are also visually simpler than those of deep neu-
rons.

When further plotting the fitness-distance diagram (Fig. 4),
we observed that, although shallow neurons can have good
invariance, they surprisingly have zero selectivity (i.e. blue
curve drops as slow as the baseline), while deep neurons
show both good invariance and selectivity.4 We also tested
manually rotated optimal stimuli of shallow neurons, since
they are generally most selective to orientation changes (of
e.g. Gabor filters). However, the resultant fitnesses still did
not drop faster then the numerical solutions like illustrated
in Fig. 4. This suggests our numerical searches likely had
found the steepest selectivity curves for shallow neurons—
the cosine falloff.

Comparisons between the shallow and deep representations
are summarized in Fig. 5. In addition to the quantities of
differences, the significance levels are also reported. With
statistical testing, we can confirm deep representations are
indeed quantitatively and significantly better than shallow
representations. Otherwise, such claim is hardly supported,
particularly since their distributions of complexity and in-
variance measures are actually very close.

Selectivity (as the most significantly different measure) can
strongly benefit visual recognition given similar invariance,
because subtle visual differences can induce more neuronal
response changes when the gap between the invariance and
selectivity curves at a small δ is larger (i.e. stronger selec-
tivity).

4A small fraction of invariance curves actually went over 1 as
more optimization (2) were run with the increasing δ, simply due
to the non-convex nature of these networks. This however did not
cause any noticeable difference in our results as shown in Fig. 5.
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Figure 6. Visualization of good and bad representations. Exam-
ples of good and bad invertibility, invariance and selectivity align-
ments, from deep representations, are shown respectively. Color
of the boarder of an image indicates the corresponding measure
value.

4.2. Good vs. Bad Representations

Figure 6 demonstrates deep representations with good and
bad measures. A representation with good invertibility sim-
ply implies it can be inverted with results visually closer to
the reference stimulus, compared to a representation with
bad invertibility. Similarly, a representation with good in-
variance (or selectivity) alignment against natural images,
implies its most invariant (or selective) directions, starting
from a reference stimulus, point to other more natural look-
ing images. One may observe such differences more easily
in the directions ∆, where a good representation has more
natural (e.g. structural deformations, lighting changes, etc.)
∆ and a bad representation has noisy ∆.

Correlations between all the 100 deep networks’ represen-
tation measures and performance are summarized in Fig. 7,
where multiple correlation analysis (i.e. best linear combi-
nation) is used to integrate multiple representations.5 Over-
all, the proposed representation measures can explain 71%

5The remaining measures included in the multiple correlation
analysis but not individually plotted in Fig. 7 are the invariance,
selectivity, invariance capacity, and optimal stimulus’ explanation
power, and their correlations and significance levels are−0.31∗∗,
−0.24∗,−0.39∗∗∗ and 0.60∗∗∗ respectively. Details can be found
in (Tsai & Cox, 2015).
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Figure 7. Correlations between deep representations’ measures
and performance. Spearman’s rank correlations and their signifi-
cance levels of all measures combined and the 3 individual mea-
sures versus the performance are 0.84∗∗∗, 0.64∗∗∗,−0.44∗∗∗ and
−0.56∗∗∗ respectively.

of the variance (ρ2, where ρ = 0.84) of the networks’ per-
formance with strong statistical significance.

Invertibility is noticeably the strongest measure in predict-
ing the network performance, despite that those networks,
like in most previous work, were not trained to perform an
inversion task. This can be seen as an evidence supporting
the view that deep networks, although being discriminative
models, actually perform like generative models implicitly
(Patel et al., 2015; Arora et al., 2016), in which case better
“invertibility” naturally corresponds to better performance.

5. Discussion
In this work, we verified the effectiveness of our methods in
characterizing visual representations from randomly gener-
ated networks performing face pair matching tasks. One of
the future directions is to apply our methods onto more re-
cent and deeper networks trained under various recognition
tasks and see if similar known or other unknown properties
can be identified. Both of these cases can not only enhance
our understandings toward deeper representations, but also
help us in improving their performance potentially. For in-
stance, better network performance may be achieved (Reed
et al., 2015) by enforcing invertibility—the most important
property identified in this work. This suggests regularizing
crucial representation properties to improve their measures
(thus the performance potentially) can be a valuable future
direction as well.
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